PostgreSQL tutorial for Beginners – PostgreSQL – GROUP BY

Hits: 82

PostgreSQL – GROUP BY

 

The PostgreSQL GROUP BY clause is used in collaboration with the SELECT statement to group together those rows in a table that have identical data. This is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.

The GROUP BY clause follows the WHERE clause in a SELECT statement and precedes the ORDER BY clause.

Syntax

The basic syntax of GROUP BY clause is given below. The GROUP BY clause must follow the conditions in the WHERE clause and must precede the ORDER BY clause if one is used.

SELECT column-list
FROM table_name
WHERE [ conditions ]
GROUP BY column1, column2....columnN
ORDER BY column1, column2....columnN

You can use more than one column in the GROUP BY clause. Make sure whatever column you are using to group, that column should be available in column-list.

Example

Consider the table COMPANY having records as follows −

# select * from COMPANY;
 id | name  | age | address   | salary
----+-------+-----+-----------+--------
  1 | Paul  |  32 | California|  20000
  2 | Allen |  25 | Texas     |  15000
  3 | Teddy |  23 | Norway    |  20000
  4 | Mark  |  25 | Rich-Mond |  65000
  5 | David |  27 | Texas     |  85000
  6 | Kim   |  22 | South-Hall|  45000
  7 | James |  24 | Houston   |  10000
(7 rows)

If you want to know the total amount of salary of each customer, then GROUP BY query would be as follows −

testdb=# SELECT NAME, SUM(SALARY) FROM COMPANY GROUP BY NAME;

This would produce the following result −

  name  |  sum
 -------+-------
  Teddy | 20000
  Paul  | 20000
  Mark  | 65000
  David | 85000
  Allen | 15000
  Kim   | 45000
  James | 10000
(7 rows)

Now, let us create three more records in COMPANY table using the following INSERT statements −

INSERT INTO COMPANY VALUES (8, 'Paul', 24, 'Houston', 20000.00);
INSERT INTO COMPANY VALUES (9, 'James', 44, 'Norway', 5000.00);
INSERT INTO COMPANY VALUES (10, 'James', 45, 'Texas', 5000.00);

Now, our table has the following records with duplicate names −

  id | name  | age | address      | salary
 ----+-------+-----+--------------+--------
   1 | Paul  |  32 | California   |  20000
   2 | Allen |  25 | Texas        |  15000
   3 | Teddy |  23 | Norway       |  20000
   4 | Mark  |  25 | Rich-Mond    |  65000
   5 | David |  27 | Texas        |  85000
   6 | Kim   |  22 | South-Hall   |  45000
   7 | James |  24 | Houston      |  10000
   8 | Paul  |  24 | Houston      |  20000
   9 | James |  44 | Norway       |   5000
  10 | James |  45 | Texas        |   5000
(10 rows)

Again, let us use the same statement to group-by all the records using NAME column as follows −

testdb=# SELECT NAME, SUM(SALARY) FROM COMPANY GROUP BY NAME ORDER BY NAME;

This would produce the following result −

 name  |  sum
-------+-------
 Allen | 15000
 David | 85000
 James | 20000
 Kim   | 45000
 Mark  | 65000
 Paul  | 40000
 Teddy | 20000
(7 rows)

Let us use ORDER BY clause along with GROUP BY clause as follows −

testdb=#  SELECT NAME, SUM(SALARY)
         FROM COMPANY GROUP BY NAME ORDER BY NAME DESC;

This would produce the following result −

 name  |  sum
-------+-------
 Teddy | 20000
 Paul  | 40000
 Mark  | 65000
 Kim   | 45000
 James | 20000
 David | 85000
 Allen | 15000
(7 rows)

 

Python Example for Beginners

Two Machine Learning Fields

There are two sides to machine learning:

  • Practical Machine Learning:This is about querying databases, cleaning data, writing scripts to transform data and gluing algorithm and libraries together and writing custom code to squeeze reliable answers from data to satisfy difficult and ill defined questions. It’s the mess of reality.
  • Theoretical Machine Learning: This is about math and abstraction and idealized scenarios and limits and beauty and informing what is possible. It is a whole lot neater and cleaner and removed from the mess of reality.

Data Science Resources: Data Science Recipes and Applied Machine Learning Recipes

Introduction to Applied Machine Learning & Data Science for Beginners, Business Analysts, Students, Researchers and Freelancers with Python & R Codes @ Western Australian Center for Applied Machine Learning & Data Science (WACAMLDS) !!!

Latest end-to-end Learn by Coding Recipes in Project-Based Learning:

Applied Statistics with R for Beginners and Business Professionals

Data Science and Machine Learning Projects in Python: Tabular Data Analytics

Data Science and Machine Learning Projects in R: Tabular Data Analytics

Python Machine Learning & Data Science Recipes: Learn by Coding

R Machine Learning & Data Science Recipes: Learn by Coding

Comparing Different Machine Learning Algorithms in Python for Classification (FREE)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.  

Google –> SETScholars