# How to utilise Confusion Matrix in R

A confusion matrix is a table that is used to evaluate the performance of a classification model. It is used to compare the predicted values from a model with the actual values, and it helps to understand how well a model is doing at classifying data. In R, the confusionMatrix() function from the caret package can be used to create and analyze a confusion matrix.

A confusion matrix is made up of four main components: true positives, true negatives, false positives, and false negatives. True positives are the number of observations that were correctly predicted as positive. True negatives are the number of observations that were correctly predicted as negative. False positives are the number of observations that were incorrectly predicted as positive, and false negatives are the number of observations that were incorrectly predicted as negative.

To use the confusionMatrix() function in R, you first need to have a dataset that you want to classify, and you also need to have a model that you have trained to classify the data. Once you have your dataset and model, you can use the confusionMatrix() function to create a confusion matrix.

For example, if you have a vector called “actual_values” that contains the actual values of your data, and another vector called “predicted_values” that contains the predicted values from your model, you can create a confusion matrix using the following code:

`confusion_matrix <- confusionMatrix(actual_values, predicted_values)`

This will return an object called “confusion_matrix” that contains the confusion matrix and other information such as the accuracy and error rate of the model.

The confusion matrix is a powerful tool that can help you to evaluate the performance of a classification model, it’s useful to understand the errors of the model and to identify where the model is making mistakes, so you can make adjustments accordingly.

In summary, a confusion matrix is a table that is used to evaluate the performance of a classification model. It compares the predicted values from a model with the actual values, and it helps to understand how well a model is doing at classifying data. In R, the confusionMatrix() function from the caret package can be used to create and analyze a confusion matrix. The matrix contains information about true positives, true negatives, false positives, and false negatives. It can help you to understand the errors of the model and to identify where the model is making mistakes.

In this Applied Machine Learning Recipe, you will learn: How to utilise Confusion Matrix in R.

### Essential Gigs

**Nilimesh: I will develop time series forecasting model for you using python or r for $50 on…**

*For only $50, Nilimesh will develop time series forecasting model for you using python or r. | Note: please contact me…*www.fiverr.com

**Nilimesh: I will do your data analytics and econometrics projects in python for $50 on fiverr.com**

*For only $50, Nilimesh will do your data analytics and econometrics projects in python. | Note: please contact me…*www.fiverr.com

**Nilimesh: I will do your machine learning and data science projects in python for $50 on fiverr.com**

*For only $50, Nilimesh will do your machine learning and data science projects in python. | Note: please contact me…*www.fiverr.com

**Nilimesh: I will do your gis and spatial programming projects in python for $50 on fiverr.com**

*For only $50, Nilimesh will do your gis and spatial programming projects in python. | Note: please contact me before…*www.fiverr.com