# Beginners tutorial with R – Vectors

Hits: 13

## Beginners tutorial with R – Vectors

Vectors are the most basic R data objects and there are six types of atomic vectors. They are logical, integer, double, complex, character and raw.

## Vector Creation

### Single Element Vector

Even when you write just one value in R, it becomes a vector of length 1 and belongs to one of the above vector types.

```# Atomic vector of type character.
print("abc");

# Atomic vector of type double.
print(12.5)

# Atomic vector of type integer.
print(63L)

# Atomic vector of type logical.
print(TRUE)

# Atomic vector of type complex.
print(2+3i)

# Atomic vector of type raw.
print(charToRaw('hello'))```

When we execute the above code, it produces the following result −

```[1] "abc"
[1] 12.5
[1] 63
[1] TRUE
[1] 2+3i
[1] 68 65 6c 6c 6f
```

### Multiple Elements Vector

Using colon operator with numeric data

```# Creating a sequence from 5 to 13.
v <- 5:13
print(v)

# Creating a sequence from 6.6 to 12.6.
v <- 6.6:12.6
print(v)

# If the final element specified does not belong to the sequence then it is discarded.
v <- 3.8:11.4
print(v)```

When we execute the above code, it produces the following result −

```[1]  5  6  7  8  9 10 11 12 13
[1]  6.6  7.6  8.6  9.6 10.6 11.6 12.6
[1]  3.8  4.8  5.8  6.8  7.8  8.8  9.8 10.8
```

Using sequence (Seq.) operator

```# Create vector with elements from 5 to 9 incrementing by 0.4.
print(seq(5, 9, by = 0.4))```

When we execute the above code, it produces the following result −

```[1] 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0
```

Using the c() function

The non-character values are coerced to character type if one of the elements is a character.

```# The logical and numeric values are converted to characters.
s <- c('apple','red',5,TRUE)
print(s)```

When we execute the above code, it produces the following result −

```[1] "apple" "red"   "5"     "TRUE"
```

## Accessing Vector Elements

Elements of a Vector are accessed using indexing. The [ ] brackets are used for indexing. Indexing starts with position 1. Giving a negative value in the index drops that element from result.TRUE, FALSE or 0 and 1 can also be used for indexing.

```# Accessing vector elements using position.
t <- c("Sun","Mon","Tue","Wed","Thurs","Fri","Sat")
u <- t[c(2,3,6)]
print(u)

# Accessing vector elements using logical indexing.
v <- t[c(TRUE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE)]
print(v)

# Accessing vector elements using negative indexing.
x <- t[c(-2,-5)]
print(x)

# Accessing vector elements using 0/1 indexing.
y <- t[c(0,0,0,0,0,0,1)]
print(y)```

When we execute the above code, it produces the following result −

```[1] "Mon" "Tue" "Fri"
[1] "Sun" "Fri"
[1] "Sun" "Tue" "Wed" "Fri" "Sat"
[1] "Sun"
```

## Vector Manipulation

### Vector arithmetic

Two vectors of same length can be added, subtracted, multiplied or divided giving the result as a vector output.

```# Create two vectors.
v1 <- c(3,8,4,5,0,11)
v2 <- c(4,11,0,8,1,2)

# Vector subtraction.
sub.result <- v1-v2
print(sub.result)

# Vector multiplication.
multi.result <- v1*v2
print(multi.result)

# Vector division.
divi.result <- v1/v2
print(divi.result)```

When we execute the above code, it produces the following result −

```[1]  7 19  4 13  1 13
[1] -1 -3  4 -3 -1  9
[1] 12 88  0 40  0 22
[1] 0.7500000 0.7272727       Inf 0.6250000 0.0000000 5.5000000
```

### Vector Element Recycling

If we apply arithmetic operations to two vectors of unequal length, then the elements of the shorter vector are recycled to complete the operations.

```v1 <- c(3,8,4,5,0,11)
v2 <- c(4,11)
# V2 becomes c(4,11,4,11,4,11)

sub.result <- v1-v2
print(sub.result)```

When we execute the above code, it produces the following result −

```[1]  7 19  8 16  4 22
[1] -1 -3  0 -6 -4  0
```

### Vector Element Sorting

Elements in a vector can be sorted using the sort() function.

```v <- c(3,8,4,5,0,11, -9, 304)

# Sort the elements of the vector.
sort.result <- sort(v)
print(sort.result)

# Sort the elements in the reverse order.
revsort.result <- sort(v, decreasing = TRUE)
print(revsort.result)

# Sorting character vectors.
v <- c("Red","Blue","yellow","violet")
sort.result <- sort(v)
print(sort.result)

# Sorting character vectors in reverse order.
revsort.result <- sort(v, decreasing = TRUE)
print(revsort.result)```

When we execute the above code, it produces the following result −

```[1]  -9   0   3   4   5   8  11 304
[1] 304  11   8   5   4   3   0  -9
[1] "Blue"   "Red"    "violet" "yellow"
[1] "yellow" "violet" "Red"    "Blue"```

Support Vector Machine in R

# Personal Career & Learning Guide for Data Analyst, Data Engineer and Data Scientist

## Applied Machine Learning & Data Science Projects and Coding Recipes for Beginners

A list of FREE programming examples together with eTutorials & eBooks @ SETScholars

# Projects and Coding Recipes, eTutorials and eBooks: The best All-in-One resources for Data Analyst, Data Scientist, Machine Learning Engineer and Software Developer

Topics included: Classification, Clustering, Regression, Forecasting, Algorithms, Data Structures, Data Analytics & Data Science, Deep Learning, Machine Learning, Programming Languages and Software Tools & Packages.
(Discount is valid for limited time only)

`Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.`

# Learn by Coding: v-Tutorials on Applied Machine Learning and Data Science for Beginners

Please do not waste your valuable time by watching videos, rather use end-to-end (Python and R) recipes from Professional Data Scientists to practice coding, and land the most demandable jobs in the fields of Predictive analytics & AI (Machine Learning and Data Science).

The objective is to guide the developers & analysts to “Learn how to Code” for Applied AI using end-to-end coding solutions, and unlock the world of opportunities!