Stock Market Forecasting in Python – MLP model using EuStockMarket dataset

Hits: 253

Stock Market Forecasting in Python – MLP model using EuStockMarket dataset

 

 

 

In this Applied Machine Learning & Data Science Recipe (Jupyter Notebook), the reader will find the practical use of applied machine learning and data science in Python programming: Stock Market Forecasting in Python – LSTM model using EuStockMarket dataset.

Forecasting is required in many situations: deciding whether to build another power generation plant in the next five years requires forecasts of future demand; scheduling staff in a call centre next week requires forecasts of call volumes; stocking an inventory requires forecasts of stock requirements. Forecasts can be required several years in advance (for the case of capital investments), or only a few minutes beforehand (for telecommunication routing). Whatever the circumstances or time horizons involved, forecasting is an important aid to effective and efficient planning.

Some things are easier to forecast than others. The time of the sunrise tomorrow morning can be forecast precisely. On the other hand, tomorrow’s lotto numbers cannot be forecast with any accuracy. The predictability of an event or a quantity depends on several factors including:

  1. how well we understand the factors that contribute to it;
  2. how much data is available;
  3. whether the forecasts can affect the thing we are trying to forecast.

For example, forecasts of electricity demand can be highly accurate because all three conditions are usually satisfied. We have a good idea of the contributing factors: electricity demand is driven largely by temperatures, with smaller effects for calendar variation such as holidays, and economic conditions. Provided there is a sufficient history of data on electricity demand and weather conditions, and we have the skills to develop a good model linking electricity demand and the key driver variables, the forecasts can be remarkably accurate.

 

 

Personal Career & Learning Guide for Data Analyst, Data Engineer and Data Scientist

Applied Machine Learning & Data Science Projects and Coding Recipes for Beginners

A list of FREE programming examples together with eTutorials & eBooks @ SETScholars

95% Discount on “Projects & Recipes, tutorials, ebooks”

Projects and Coding Recipes, eTutorials and eBooks: The best All-in-One resources for Data Analyst, Data Scientist, Machine Learning Engineer and Software Developer

Topics included: Classification, Clustering, Regression, Forecasting, Algorithms, Data Structures, Data Analytics & Data Science, Deep Learning, Machine Learning, Programming Languages and Software Tools & Packages.
(Discount is valid for limited time only)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.

Learn by Coding: v-Tutorials on Applied Machine Learning and Data Science for Beginners

There are 2000+ End-to-End Python & R Notebooks are available to build Professional Portfolio as a Data Scientist and/or Machine Learning Specialist. All Notebooks are only $19.95. We would like to request you to have a look at the website for FREE the end-to-end notebooks, and then decide whether you would like to purchase or not.

Please do not waste your valuable time by watching videos, rather use end-to-end (Python and R) recipes from Professional Data Scientists to practice coding, and land the most demandable jobs in the fields of Predictive analytics & AI (Machine Learning and Data Science).

The objective is to guide the developers & analysts to “Learn how to Code” for Applied AI using end-to-end coding solutions, and unlock the world of opportunities!

 

How to do Stock Market Forecasting in Python – SARIMA model using EuStockMarket dataset

Stock Market Forecasting in Python – CNN model using EuStockMarket dataset

Stock Market Forecasting in Python – LSTM model using EuStockMarket dataset