Linear Regression in R using OLS Regression

Hits: 423

Linear Regression in R using OLS Regression

Linear regression is a statistical method that is used to predict a continuous outcome variable based on one or more predictor variables. In R, one way to perform linear regression is through OLS (Ordinary Least Squares) regression.

The basic process for performing OLS regression in R is as follows:

Prepare the data by loading it into R and making sure that the predictor and target variables are in the correct format.

Fit a linear model to the data using the lm() function. This function takes the target variable and predictor variable as input.

View the results of the linear model by using the summary() function, which will give you information such as the coefficients of the model, the R-squared value, and the p-values of the predictor variables.

It’s important to note that this is a basic example and in practice, you would need to do more steps such as checking for assumptions, model selection, cross-validation, and evaluating the model. OLS regression is a powerful and easy-to-use technique for performing linear regression in R, it allows you to quickly fit a linear model to your data and view the results in a clear and concise format.

 

In this Data Science Recipe, you will learn: Linear Regression in R using OLS Regression.



Linear Regression in R using OLS Regression

Free Machine Learning & Data Science Coding Tutorials in Python & R for Beginners. Subscribe @ Western Australian Center for Applied Machine Learning & Data Science.

 

Personal Career & Learning Guide for Data Analyst, Data Engineer and Data Scientist

Applied Machine Learning & Data Science Projects and Coding Recipes for Beginners

A list of FREE programming examples together with eTutorials & eBooks @ SETScholars

95% Discount on “Projects & Recipes, tutorials, ebooks”

Projects and Coding Recipes, eTutorials and eBooks: The best All-in-One resources for Data Analyst, Data Scientist, Machine Learning Engineer and Software Developer

Topics included: Classification, Clustering, Regression, Forecasting, Algorithms, Data Structures, Data Analytics & Data Science, Deep Learning, Machine Learning, Programming Languages and Software Tools & Packages.
(Discount is valid for limited time only)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.

Learn by Coding: v-Tutorials on Applied Machine Learning and Data Science for Beginners

There are 2000+ End-to-End Python & R Notebooks are available to build Professional Portfolio as a Data Scientist and/or Machine Learning Specialist. All Notebooks are only $19.95. We would like to request you to have a look at the website for FREE the end-to-end notebooks, and then decide whether you would like to purchase or not.

Please do not waste your valuable time by watching videos, rather use end-to-end (Python and R) recipes from Professional Data Scientists to practice coding, and land the most demandable jobs in the fields of Predictive analytics & AI (Machine Learning and Data Science).

The objective is to guide the developers & analysts to “Learn how to Code” for Applied AI using end-to-end coding solutions, and unlock the world of opportunities!