
Chapter 47: Shiny
Section 47.1: Create an app
Shiny is an R package developed by RStudio that allows the creation of web pages to interactively display the results
of an analysis in R.

There are two simple ways to create a Shiny app:

in one .R file, or
in two files: ui.R and server.R.

A Shiny app is divided into two parts:

ui: A user interface script, controlling the layout and appearance of the application.
server: A server script which contains code to allow the application to react.

One file
library(shiny)

Create the UI
ui <- shinyUI(fluidPage(
 # Application title
 titlePanel("Hello World!")
))

Create the server function
server <- shinyServer(function(input, output){})

Run the app
shinyApp(ui = ui, server = server)

Two files
Create ui.R file
library(shiny)

Define UI for application
shinyUI(fluidPage(
 # Application title
 titlePanel("Hello World!")
))

Create server.R file
library(shiny)

Define server logic
shinyServer(function(input, output){})

Section 47.2: Checkbox Group
Create a group of checkboxes that can be used to toggle multiple choices independently. The server will receive the
input as a character vector of the selected values.

library(shiny)

ui <- fluidPage(

https://cran.r-project.org/web/packages/shiny/index.html
https://www.rstudio.com/home/

 checkboxGroupInput("checkGroup1", label = h3("This is a Checkbox group"),
 choices = list("1" = 1, "2" = 2, "3" = 3),
 selected = 1),
 fluidRow(column(3, verbatimTextOutput("text_choice")))
)

server <- function(input, output){
 output$text_choice <- renderPrint({
 return(paste0("You have chosen the choice ",input$checkGroup1))})
}

shinyApp(ui = ui, server = server)

It's possible to change the settings :

label : title
choices : selected values
selected : The initially selected value (NULL for no selection)
inline : horizontal or vertical
width

It is also possible to add HTML.

Section 47.3: Radio Button
You can create a set of radio buttons used to select an item from a list.

It's possible to change the settings :

selected : The initially selected value (character(0) for no selection)
inline : horizontal or vertical
width

It is also possible to add HTML.

library(shiny)

ui <- fluidPage(
 radioButtons("radio",
 label = HTML('Welcome
 Your
favorite color is red ?'),
 choices = list("TRUE" = 1, "FALSE" = 2),
 selected = 1,
 inline = T,
 width = "100%"),

http://i.stack.imgur.com/LcpI1.png

 fluidRow(column(3, textOutput("value"))))

server <- function(input, output){
 output$value <- renderPrint({
 if(input$radio == 1){return('Great !')}
 else{return("Sorry !")}})}

shinyApp(ui = ui, server = server)

Section 47.4: Debugging
debug() and debugonce() won't work well in the context of most Shiny debugging. However, browser() statements
inserted in critical places can give you a lot of insight into how your Shiny code is (not) working. See also: Debugging
using browser()

Showcase mode

Showcase mode displays your app alongside the code that generates it and highlights lines of code in server.R as it
runs them.

There are two ways to enable Showcase mode:

Launch Shiny app with the argument display.mode = "showcase", e.g., runApp("MyApp", display.mode =
"showcase").
Create file called DESCRIPTION in your Shiny app folder and add this line in it: DisplayMode: Showcase.

Reactive Log Visualizer

Reactive Log Visualizer provides an interactive browser-based tool for visualizing reactive dependencies and
execution in your application. To enable Reactive Log Visualizer, execute options(shiny.reactlog=TRUE) in R
console and or add that line of code in your server.R file. To start Reactive Log Visualizer, hit Ctrl+F3 on Windows or
Command+F3 on Mac when your app is running. Use left and right arrow keys to navigate in Reactive Log Visualizer.

Section 47.5: Select box
Create a select list that can be used to choose a single or multiple items from a list of values.

library(shiny)

ui <- fluidPage(
 selectInput("id_selectInput",
 label = HTML('What is your favorite color ?'),
 multiple = TRUE,
 choices = list("red" = "red", "green" = "green", "blue" = "blue", "yellow" = "yellow"),
 selected = NULL),
 br(), br(),
 fluidRow(column(3, textOutput("text_choice"))))

http://i.stack.imgur.com/Xj5UC.png
http://shiny.rstudio.com/articles/display-modes.html
http://shiny.rstudio.com/reference/shiny/latest/showReactLog.html

server <- function(input, output){
 output$text_choice <- renderPrint({
 return(input$id_selectInput)})
}

shinyApp(ui = ui, server = server)

It's possible to change the settings :

label : title
choices : selected values
selected : The initially selected value (NULL for no selection)
multiple : TRUE or FALSE
width
size
selectize: TRUE or FALSE (for use or not selectize.js, change the display)

It is also possible to add HTML.

Section 47.6: Launch a Shiny app
You can launch an application in several ways, depending on how you create you app. If your app is divided in two
files ui.R and server.R or if all of your app is in one file.

1. Two files app

Your two files ui.R and server.Rhave to be in the same folder. You could then launch your app by running in the
console the shinyApp() function and by passing the path of the directory that contains the Shiny app.

shinyApp("path_to_the_folder_containing_the_files")

You can also launch the app directly from Rstudio by pressing the Run App button that appear on Rstudio when
you an ui.R or server.R file open.

Or you can simply write runApp() on the console if your working directory is Shiny App directory.

2. One file app

If you create your in one R file you can also launch it with the shinyApp() function.

inside of your code :

http://i.stack.imgur.com/rYCsz.png
http://i.stack.imgur.com/zietn.png

library(shiny)

ui <- fluidPage() #Create the ui
server <- function(input, output){} #create the server

shinyApp(ui = ui, server = server) #run the App

in the console by adding path to a .R file containing the Shiny application with the parameter appFile:

shinyApp(appFile="path_to_my_R_file_containig_the_app")

Section 47.7: Control widgets
Function Widget

actionButton Action Button

checkboxGroupInput A group of check boxes

checkboxInput A single check box

dateInput A calendar to aid date selection

dateRangeInput A pair of calendars for selecting a date range

fileInput A file upload control wizard

helpText Help text that can be added to an input form

numericInput A field to enter numbers

radioButtons A set of radio buttons

selectInput A box with choices to select from

sliderInput A slider bar

submitButton A submit button

textInput A field to enter text

library(shiny)

Create the UI
ui <- shinyUI(fluidPage(
 titlePanel("Basic widgets"),

 fluidRow(

 column(3,
 h3("Buttons"),
 actionButton("action", label = "Action"),
 br(),
 br(),
 submitButton("Submit")),

 column(3,
 h3("Single checkbox"),
 checkboxInput("checkbox", label = "Choice A", value = TRUE)),

 column(3,
 checkboxGroupInput("checkGroup",
 label = h3("Checkbox group"),
 choices = list("Choice 1" = 1,
 "Choice 2" = 2, "Choice 3" = 3),
 selected = 1)),

 column(3,
 dateInput("date",
 label = h3("Date input"),

 value = "2014-01-01"))
),

 fluidRow(

 column(3,
 dateRangeInput("dates", label = h3("Date range"))),

 column(3,
 fileInput("file", label = h3("File input"))),

 column(3,
 h3("Help text"),
 helpText("Note: help text isn't a true widget,",
 "but it provides an easy way to add text to",
 "accompany other widgets.")),

 column(3,
 numericInput("num",
 label = h3("Numeric input"),
 value = 1))
),

 fluidRow(

 column(3,
 radioButtons("radio", label = h3("Radio buttons"),
 choices = list("Choice 1" = 1, "Choice 2" = 2,
 "Choice 3" = 3),selected = 1)),

 column(3,
 selectInput("select", label = h3("Select box"),
 choices = list("Choice 1" = 1, "Choice 2" = 2,
 "Choice 3" = 3), selected = 1)),

 column(3,
 sliderInput("slider1", label = h3("Sliders"),
 min = 0, max = 100, value = 50),
 sliderInput("slider2", "",
 min = 0, max = 100, value = c(25, 75))
),

 column(3,
 textInput("text", label = h3("Text input"),
 value = "Enter text..."))
)

))

Create the server function
server <- shinyServer(function(input, output){})

Run the app
shinyApp(ui = ui, server = server)

	Chapter 47: Shiny
	Section 47.1: Create an app
	Section 47.2: Checkbox Group

	Chapter 47: Shiny
	Section 47.3: Radio Button

	Chapter 47: Shiny
	Section 47.4: Debugging
	Section 47.5: Select box

	Chapter 47: Shiny
	Section 47.6: Launch a Shiny app

	Chapter 47: Shiny
	Section 47.7: Control widgets

