
Chapter 33: Introduction to Geographical
Maps
See also I/O for geographic data

Section 33.1: Basic map-making with map() from the package
maps
The function map() from the package maps provides a simple starting point for creating maps with R.

A basic world map can be drawn as follows:

require(maps)
map()

The color of the outline can be changed by setting the color parameter, col, to either the character name or hex
value of a color:

require(maps)
map(col = "cornflowerblue")

https://i.stack.imgur.com/iuQzF.png

To fill land masses with the color in col we can set fill = TRUE:

require(maps)
map(fill = TRUE, col = c("cornflowerblue"))

https://i.stack.imgur.com/ekrPZ.png
https://i.stack.imgur.com/ZxndI.png

A vector of any length may be supplied to col when fill = TRUE is also set:

require(maps)
map(fill = TRUE, col = c("cornflowerblue", "limegreen", "hotpink"))

In the example above colors from col are assigned arbitrarily to polygons in the map representing regions and
colors are recycled if there are fewer colors than polygons.

We can also use color coding to represent a statistical variable, which may optionally be described in a legend. A
map created as such is known as a "choropleth".

The following choropleth example sets the first argument of map(), which is database to "county" and "state" to
color code unemployment using data from the built-in datasets unemp and county.fips while overlaying state lines
in white:

require(maps)
if(require(mapproj)) { # mapproj is used for projection="polyconic"
 # color US county map by 2009 unemployment rate
 # match counties to map using FIPS county codes
 # Based on J's solution to the "Choropleth Challenge"
 # Code improvements by Hack-R (hack-r.github.io)

 # load data
 # unemp includes data for some counties not on the "lower 48 states" county
 # map, such as those in Alaska, Hawaii, Puerto Rico, and some tiny Virginia
 # cities
 data(unemp)
 data(county.fips)

 # define color buckets
 colors = c("paleturquoise", "skyblue", "cornflowerblue", "blueviolet", "hotpink", "darkgrey")
 unemp$colorBuckets <- as.numeric(cut(unemp$unemp, c(0, 2, 4, 6, 8, 10, 100)))

https://i.stack.imgur.com/oRkaq.png

 leg.txt <- c("<2%", "2-4%", "4-6%", "6-8%", "8-10%", ">10%")

 # align data with map definitions by (partial) matching state,county
 # names, which include multiple polygons for some counties
 cnty.fips <- county.fips$fips[match(map("county", plot=FALSE)$names,
 county.fips$polyname)]
 colorsmatched <- unemp$colorBuckets[match(cnty.fips, unemp$fips)]

 # draw map
 par(mar=c(1, 1, 2, 1) + 0.1)
 map("county", col = colors[colorsmatched], fill = TRUE, resolution = 0,
 lty = 0, projection = "polyconic")
 map("state", col = "white", fill = FALSE, add = TRUE, lty = 1, lwd = 0.1,
 projection="polyconic")
 title("unemployment by county, 2009")
 legend("topright", leg.txt, horiz = TRUE, fill = colors, cex=0.6)
}

Section 33.2: 50 State Maps and Advanced Choropleths with
Google Viz
A common question is how to juxtapose (combine) physically separate geographical regions on the same map, such
as in the case of a choropleth describing all 50 American states (The mainland with Alaska and Hawaii juxtaposed).

Creating an attractive 50 state map is simple when leveraging Google Maps. Interfaces to Google's API include the
packages googleVis, ggmap, and RgoogleMaps.

require(googleVis)

G4 <- gvisGeoChart(CityPopularity, locationvar='City', colorvar='Popularity',
 options=list(region='US', height=350,
 displayMode='markers',

https://i.stack.imgur.com/oDlru.png
http://stackoverflow.com/questions/25530358/how-do-you-create-a-50-state-map-instead-of-just-lower-48

 colorAxis="{values:[200,400,600,800],
 colors:[\'red', \'pink\', \'orange',\'green']}")
)
plot(G4)

The function gvisGeoChart() requires far less coding to create a choropleth compared to older mapping methods,
such as map() from the package maps. The colorvar parameter allows easy coloring of a statistical variable, at a
level specified by the locationvar parameter. The various options passed to options as a list allow customization
of the map's details such as size (height), shape (markers), and color coding (colorAxis and colors).

Section 33.3: Interactive plotly maps
The plotly package allows many kind of interactive plots, including maps. There are a few ways to create a map in
plotly. Either supply the map data yourself (via plot_ly() or ggplotly()), use plotly's "native" mapping
capabilities (via plot_geo() or plot_mapbox()), or even a combination of both. An example of supplying the map
yourself would be:

library(plotly)
map_data("county") %>%
 group_by(group) %>%
 plot_ly(x = ~long, y = ~lat) %>%
 add_polygons() %>%
 layout(
 xaxis = list(title = "", showgrid = FALSE, showticklabels = FALSE),
 yaxis = list(title = "", showgrid = FALSE, showticklabels = FALSE)
)

http://i.stack.imgur.com/qmGX8.png

For a combination of both approaches, swap plot_ly() for plot_geo() or plot_mapbox() in the above example.
See the plotly book for more examples.

The next example is a "strictly native" approach that leverages the layout.geo attribute to set the aesthetics and
zoom level of the map. It also uses the database world.cities from maps to filter the Brazilian cities and plot them
on top of the "native" map.

The main variables: pophis a text with the city and its population (which is shown upon mouse hover); qis a ordered
factor from the population's quantile. ge has information for the layout of the maps. See the package
documentation for more information.

library(maps)
dfb <- world.cities[world.cities$country.etc=="Brazil",]
library(plotly)
dfb$poph <- paste(dfb$name, "Pop", round(dfb$pop/1e6,2), " millions")
dfb$q <- with(dfb, cut(pop, quantile(pop), include.lowest = T))
levels(dfb$q) <- paste(c("1st", "2nd", "3rd", "4th"), "Quantile")
dfb$q <- as.ordered(dfb$q)

ge <- list(
 scope = 'south america',
 showland = TRUE,
 landcolor = toRGB("gray85"),
 subunitwidth = 1,
 countrywidth = 1,
 subunitcolor = toRGB("white"),
 countrycolor = toRGB("white")
)

plot_geo(dfb, lon = ~long, lat = ~lat, text = ~poph,
 marker = ~list(size = sqrt(pop/10000) + 1, line = list(width = 0)),
 color = ~q, locationmode = 'country names') %>%
layout(geo = ge, title = 'Populations
(Click legend to toggle)')

https://i.stack.imgur.com/jl343.png
https://cpsievert.github.io/plotly_book/maps.html
https://plot.ly/r/reference/#layout-geo
https://plot.ly/r/reference/#layout-geo
https://plot.ly/r/reference/#layout-geo

Section 33.4: Making Dynamic HTML Maps with Leaflet
Leaflet is an open-source JavaScript library for making dynamic maps for the web. RStudio wrote R bindings for
Leaflet, available through its leaflet package, built with htmlwidgets. Leaflet maps integrate well with the
RMarkdown and Shiny ecosystems.

The interface is piped, using a leaflet() function to initialize a map and subsequent functions adding (or
removing) map layers. Many kinds of layers are available, from markers with popups to polygons for creating
choropleth maps. Variables in the data.frame passed to leaflet() are accessed via function-style ~ quotation.

To map the state.name and state.center datasets:

library(leaflet)

data.frame(state.name, state.center) %>%
 leaflet() %>%
 addProviderTiles('Stamen.Watercolor') %>%
 addMarkers(lng = ~x, lat = ~y,
 popup = ~state.name,
 clusterOptions = markerClusterOptions())

https://plot.ly/r/reference/#layout-geo
http://leafletjs.com/
http://rstudio.github.io/leaflet/
http://rstudio.github.io/leaflet/
http://www.htmlwidgets.org/showcase_leaflet.html
http://rmarkdown.rstudio.com/
http://shiny.rstudio.com/
http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/state.html
http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/state.html
http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/state.html
http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/state.html
http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/state.html
http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/state.html

(Screenshot; click for dynamic version.)

Section 33.5: Dynamic Leaflet maps in Shiny applications
The Leaflet package is designed to integerate with Shiny

In the ui you call leafletOutput() and in the server you call renderLeaflet()

library(shiny)
library(leaflet)

ui <- fluidPage(
 leafletOutput("my_leaf")
)

server <- function(input, output, session){

 output$my_leaf <- renderLeaflet({

 leaflet() %>%
 addProviderTiles('Hydda.Full') %>%
 setView(lat = -37.8, lng = 144.8, zoom = 10)

 })

}

shinyApp(ui, server)

However, reactive inputs that affect the renderLeaflet expression will cause the entire map to be redrawn each
time the reactive element is updated.

https://alistaire47.github.io/leaflet/leaflet.nb.html
https://alistaire47.github.io/leaflet/leaflet.nb.html
https://rstudio.github.io/leaflet/
https://rstudio.github.io/leaflet/shiny.html

Therefore, to modify a map that's already running you should use the leafletProxy() function.

Normally you use leaflet to create the static aspects of the map, and leafletProxy to manage the dynamic
elements, for example:

library(shiny)
library(leaflet)

ui <- fluidPage(
 sliderInput(inputId = "slider",
 label = "values",
 min = 0,
 max = 100,
 value = 0,
 step = 1),
 leafletOutput("my_leaf")
)

server <- function(input, output, session){
 set.seed(123456)
 df <- data.frame(latitude = sample(seq(-38.5, -37.5, by = 0.01), 100),
 longitude = sample(seq(144.0, 145.0, by = 0.01), 100),
 value = seq(1,100))

 ## create static element
 output$my_leaf <- renderLeaflet({

 leaflet() %>%
 addProviderTiles('Hydda.Full') %>%
 setView(lat = -37.8, lng = 144.8, zoom = 8)

 })

 ## filter data
 df_filtered <- reactive({
 df[df$value >= input$slider,]
 })

 ## respond to the filtered data
 observe({

 leafletProxy(mapId = "my_leaf", data = df_filtered()) %>%
 clearMarkers() %>% ## clear previous markers
 addMarkers()
 })

}

shinyApp(ui, server)

http://i.stack.imgur.com/uw6G6.png

	Chapter 33: Introduction to Geographical Maps
	Section 33.1: Basic map-making with map() from the package maps

	Chapter 33: Introduction to Geographical Maps
	Section 33.2: 50 State Maps and Advanced Choropleths with Google Viz

	Chapter 33: Introduction to Geographical Maps
	Section 33.3: Interactive plotly maps

	Chapter 33: Introduction to Geographical Maps
	Section 33.4: Making Dynamic HTML Maps with Leaﬂet

	Chapter 33: Introduction to Geographical Maps
	Section 33.5: Dynamic Leaﬂet maps in Shiny applications

