
Chapter 32: Iterables and Iterators
Section 32.1: Iterator vs Iterable vs Generator
An iterable is an object that can return an iterator. Any object with state that has an __iter__ method and returns
an iterator is an iterable. It may also be an object without state that implements a __getitem__ method. - The
method can take indices (starting from zero) and raise an IndexError when the indices are no longer valid.

Python's str class is an example of a __getitem__ iterable.

An Iterator is an object that produces the next value in a sequence when you call next(*object*) on some object.
Moreover, any object with a __next__ method is an iterator. An iterator raises StopIteration after exhausting the
iterator and cannot be re-used at this point.

Iterable classes:

Iterable classes define an __iter__ and a __next__ method. Example of an iterable class:

class MyIterable:

 def __iter__(self):

 return self

 def __next__(self):
 #code

#Classic iterable object in older versions of python, __getitem__ is still supported...
class MySequence:

 def __getitem__(self, index):

 if (condition):
 raise IndexError
 return (item)

 #Can produce a plain `iterator` instance by using iter(MySequence())

Trying to instantiate the abstract class from the collections module to better see this.

Example:

Python 2.x Version ≥ 2.3

import collections
>>> collections.Iterator()
>>> TypeError: Cant instantiate abstract class Iterator with abstract methods next

Python 3.x Version ≥ 3.0

>>> TypeError: Cant instantiate abstract class Iterator with abstract methods __next__

Handle Python 3 compatibility for iterable classes in Python 2 by doing the following:

Python 2.x Version ≥ 2.3

class MyIterable(object): #or collections.Iterator, which I'd recommend....

 def __iter__(self):

 return self

 def next(self): #code

 __next__ = next

Both of these are now iterators and can be looped through:

ex1 = MyIterableClass()
ex2 = MySequence()

for (item) in (ex1): #code
for (item) in (ex2): #code

Generators are simple ways to create iterators. A generator is an iterator and an iterator is an iterable.

Section 32.2: Extract values one by one
Start with iter() built-in to get iterator over iterable and use next() to get elements one by one until
StopIteration is raised signifying the end:

s = {1, 2} # or list or generator or even iterator
i = iter(s) # get iterator
a = next(i) # a = 1
b = next(i) # b = 2
c = next(i) # raises StopIteration

Section 32.3: Iterating over entire iterable
s = {1, 2, 3}

get every element in s
for a in s:
 print a # prints 1, then 2, then 3

copy into list
l1 = list(s) # l1 = [1, 2, 3]

use list comprehension
l2 = [a * 2 for a in s if a > 2] # l2 = [6]

Section 32.4: Verify only one element in iterable
Use unpacking to extract the first element and ensure it's the only one:

a, = iterable

def foo():
 yield 1

a, = foo() # a = 1

nums = [1, 2, 3]
a, = nums # ValueError: too many values to unpack

Section 32.5: What can be iterable
Iterable can be anything for which items are received one by one, forward only. Built-in Python collections are
iterable:

[1, 2, 3] # list, iterate over items
(1, 2, 3) # tuple
{1, 2, 3} # set
{1: 2, 3: 4} # dict, iterate over keys

Generators return iterables:

def foo(): # foo isn't iterable yet...
 yield 1

res = foo() # ...but res already is

Section 32.6: Iterator isn't reentrant!
def gen():
 yield 1

iterable = gen()
for a in iterable:
 print a

What was the first item of iterable? No way to get it now.
Only to get a new iterator
gen()

	Chapter 32: Iterables and Iterators
	Section 32.1: Iterator vs Iterable vs Generator

	Chapter 32: Iterables and Iterators
	Section 32.2: Extract values one by one
	Section 32.3: Iterating over entire iterable
	Section 32.4: Verify only one element in iterable

	Chapter 32: Iterables and Iterators
	Section 32.5: What can be iterable
	Section 32.6: Iterator isn't reentrant!

