Chapter 29: Factors

Section 29.1: Consolidating Factor Levels with a List

There are times in which it is desirable to consolidate factor levels into fewer groups, perhaps because of sparse
data in one of the categories. It may also occur when you have varying spellings or capitalization of the category
names. Consider as an example the factor

set.seed(1)

colorful <- sample(c("red", "Red", "RED", "blue", "Blue", "BLUE", "green", "gren"),
size = 20,
replace = TRUE)

colorful <- factor(colorful)

Since R is case-sensitive, a frequency table of this vector would appear as below.

table(colorful)
colorful
blue Blue BLUE green gren red Red RED
3 1 4 2 4 1 3 2

This table, however, doesn't represent the true distribution of the data, and the categories may effectively be
reduced to three types: Blue, Green, and Red. Three examples are provided. The first illustrates what seems like an
obvious solution, but won't actually provide a solution. The second gives a working solution, but is verbose and
computationally expensive. The third is not an obvious solution, but is relatively compact and computationally
efficient.

Consolidating levels using factor (factor_approach)

factor(as.character(colorful),
levels = c("blue", "Blue", "BLUE", "green", "gren", "red", "Red", "RED")
labels = c("Blue", "Blue", "Blue", "Green", "Green", "Red", "Red", "Red"))

[1] Green Blue Red Red Blue Red Red Red Blue Red Green Green Green Blue
Red Green

[17] Red Green Green Red

Levels: Blue Blue Blue Green Green Red Red Red

Warning message:

In “levels<-"(*tmp*", value = if (nl == nL) as.character(labels) else paste0(labels,

duplicated levels in factors are deprecated

Notice that there are duplicated levels. We still have three categories for "Blue", which doesn't complete our task of
consolidating levels. Additionally, there is a warning that duplicated levels are deprecated, meaning that this code
may generate an error in the future.

Consolidating levels using ifelse (ifelse_approach)

factor(ifelse(colorful %in% c("blue", "Blue", "BLUE")
"Blue",
ifelse(colorful %in% c("green", "gren"),
"Green",
"Red")))

[1] Green Blue Red Red Blue Red Red Red Blue Red Green Green Green Blue
Red Green

[17] Red Green Green Red
Levels: Blue Green Red

This code generates the desired result, but requires the use of nested ifelse statements. While there is nothing
wrong with this approach, managing nested ifelse statements can be a tedious task and must be done carefully.

Consolidating Factors Levels with a List (1ist_approach)

A less obvious way of consolidating levels is to use a list where the name of each element is the desired category
name, and the element is a character vector of the levels in the factor that should map to the desired category. This
has the added advantage of working directly on the 1levels attribute of the factor, without having to assign new
objects.

levels(colorful) <-
list("Blue" = c("blue", "Blue", "BLUE"),
"Green" = c("green", "gren"),
"Red" = c¢("red", "Red", "RED"))

[1] Green Blue Red Red Blue Red Red Red Blue Red Green Green Green Blue
Red Green

[17] Red Green Green Red
Levels: Blue Green Red

Benchmarking each approach

The time required to execute each of these approaches is summarized below. (For the sake of space, the code to
generate this summary is not shown)

Unit: microseconds
expr min 1q mean median uq max neval cld
factor 78.725 83.256 93.26023 87.5030 97.131 218.899 100 b
ifelse 104.494 107.609 123.53793 113.4145 128.281 254.580 160 ¢
list_approach 49.557 52.955 60.50756 54.9370 65.132 138.193 100 a

The list approach runs about twice as fast as the ifelse approach. However, except in times of very, very large
amounts of data, the differences in execution time will likely be measured in either microseconds or milliseconds.
With such small time differences, efficiency need not guide the decision of which approach to use. Instead, use an
approach that is familiar and comfortable, and which you and your collaborators will understand on future review.

Section 29.2: Basic creation of factors

Factors are one way to represent categorical variables in R. A factor is stored internally as a vector of integers. The
unique elements of the supplied character vector are known as the /evels of the factor. By default, if the levels are
not supplied by the user, then R will generate the set of unique values in the vector, sort these values
alphanumerically, and use them as the levels.

charvar <- rep(c("n", "c"), each = 3)
f <- factor(charvar)

f

levels(f)
> f

[Tl nnnecece
Levels: ¢ n
> levels(f)

[1] "c¢" "n"

If you want to change the ordering of the levels, then one option to to specify the levels manually:

levels(factor(charvar, levels = c("n","c")))

> levels(factor(charvar, levels = c("n","c")))
[1] "n" "c"

Factors have a number of properties. For example, levels can be given labels:

> f <- factor(charvar, levels=c("'n", "c"), labels=c("Newt", "Capybara"))
> f
[1] Newt Newt Newt Capybara Capybara Capybara

Levels: Newt Capybara

Another property that can be assigned is whether the factor is ordered:

> Weekdays <- factor(c("Monday", "Wednesday", "Thursday", "Tuesday", "Friday", "Sunday",
"Saturday"))

> Weekdays

[1] Monday Wednesday Thursday Tuesday Friday Sunday Saturday

Levels: Friday Monday Saturday Sunday Thursday Tuesday Wednesday

> Weekdays <- factor(Weekdays, levels=c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday”, "Sunday"), ordered=TRUE)

> Weekdays

[1] Monday Wednesday Thursday Tuesday Friday Sunday Saturday

Levels: Monday < Tuesday < Wednesday < Thursday < Friday < Saturday < Sunday

When a level of the factor is no longer used, you can drop it using the droplevels() function:

> Weekend <- subset(Weekdays, Weekdays == "Saturday" | Weekdays == "Sunday")
> Weekend

[1] Sunday Saturday

Levels: Monday < Tuesday < Wednesday < Thursday < Friday < Saturday < Sunday
> Weekend <- droplevels(Weekend)

> Weekend

[1] Sunday Saturday

Levels: Saturday < Sunday

Section 29.3: Changing and reordering factors

When factors are created with defaults, levels are formed by as.character applied to the inputs and are ordered
alphabetically.

charvar <- rep(c("W", "n", "c"), times=c(17,20,14))
f <- factor(charvar)

levels(f)

[1] "c¢c" "n" "W"

In some situations the treatment of the default ordering of levels (alphabetic/lexical order) will be acceptable. For
example, if one justs want to plot the frequencies, this will be the result:

plot(f,col=1:1length(levels(f)))

20

15

But if we want a different ordering of 1levels, we need to specify this in the levels or labels parameter (taking
care that the meaning of "order" here is different from ordered factors, see below). There are many alternatives to
accomplish that task depending on the situation.

1. Redefine the factor

When it is possible, we can recreate the factor using the levels parameter with the order we want.

ff <- factor(charvar, levels = c("n", "W", "c"))
levels(ff)

[1] "n" "W" "c"

gg <- factor(charvar, levels = c("W", "c", "n"))

levels(gg)
[1] "w" "c¢" "n"

When the input levels are different than the desired output levels, we use the labels parameter which causes the
levels parameter to become a "filter" for acceptable input values, but leaves the final values of "levels" for the
factor vector as the argument to labels:

fm <- factor(as.numeric(f), levels = ¢(2,3,1),
labels = c("nn", "WW", "cc"))

levels(fm)

[1] "nn" "WW" "cc"

fm <- factor(LETTERS[1:6], levels = LETTERS[1:4], # only 'A'-'D' as input

labels = letters[1:4]) # but assigned to 'a'-'d’

https://i.stack.imgur.com/8GNrU.png

fm
#[1] a b € d <NA> <NA>
#levels: abcd

2. Use relevel function

When there is one specific 1evel that needs to be the first we can use relevel. This happens, for example, in the
context of statistical analysis, when a base category is necessary for testing hypothesis.

g<-relevel(f, "n") # moves n to be the first level
levels(g)
[1] llnll IICII IIWII

As can be verified f and g are the same

all.equal(f, g)

[1] "Attributes: < Component “levels”: 2 string mismatches >
all.equal(f, g, check.attributes = F)

[1] TRUE

3. Reordering factors

There are cases when we need to reorder the levels based on a number, a partial result, a computed statistic, or
previous calculations. Let's reorder based on the frequencies of the levels

table(qg)
#9g

n c W
20 14 17

The reorder function is generic (see help(reorder)), but in this context needs: x, in this case the factor; X, a
numeric value of the same length as x; and FUN, a function to be applied to X and computed by level of the x, which
determines the levels order, by default increasing. The result is the same factor with its levels reordered.

g.ord <- reorder(g,rep(1,length(g)), FUN=sum) #increasing
levels(g.ord)
[1] "c¢c" "W" "n"

To get de decreasing order we consider negative values (-1)

g.ord.d <- reorder(g,rep(-1,length(g)), FUN=sum)
levels(g.ord.d)
[-I] Ilnll Ilwll IICII

Again the factor is the same as the others.

data.frame(f,g,g.ord,g.ord.d)[seq(1,length(g),by=5),] #just same lines

f g g.ord g.ord.d
#1 WW W W
#6 WW] W
11T W W W W
16 W W W W
21 nn n n
26 nn n n
31 nn n n
36 nn n n
41 c ¢ c ©

46 c c c c
51 c ¢ c c

When there is a quantitative variable related to the factor variable, we could use other functions to reorder the
levels. Lets take the iris data (help("iris") for more information), for reordering the Species factor by using its
mean Sepal.Width.

miris <- iris #help("iris") # copy the data
with(miris, tapply(Sepal.Width, Species,mean))
setosa versicolor virginica
3.428 2.770 2.974

mirisSSpecies.o<-with(miris, reorder(Species, -Sepal.Width))
levels(miris$Species.o)
[1] "setosa" "virginica" "versicolor"

The usual boxplot (say: with(miris, boxplot(Petal.Width~Species)) will show the especies in this order: setosa,
versicolor, and virginica. But using the ordered factor we get the species ordered by its mean Sepal.Width:

boxplot(Petal.Width~Species.o, data = miris,
xlab = "Species", ylab = "Petal Width",
main = "Iris Data, ordered by mean sepal width", varwidth = TRUE,
col = 2:4)

Iris Data, ordered by mean sepal width

e}
i
=
o
—
i []
| :
T | H
£ = i
E — i —
=
i
iy
o
=T
Q
o
o o
[
. B
| | |
sefosa virginica versicolar
Species

Additionally, it is also possible to change the names of levels, combine them into groups, or add new levels. For
that we use the function of the same name levels.

f1<-f

levels(f1)

[1] "c¢c" "n" "W"

levels(f1) <- c("upper","upper","CAP") #rename and grouping
levels(f1)

[1] "upper" "CAP"

f2<-f1

levels(f2) <- c("upper","CAP", "Number") #add Number level, which is empty
levels(f2)

[1] "upper"” "CAP" "Number"

f2[length(f2) : (length(f2)+5)]<-"Number" # add cases for the new level
table(f2)

f2

upper CAP Number

33 17 6

https://i.stack.imgur.com/iNmN1.png

f3<-f1

levels(f3) <- 1list(G1 = "upper", G2 = "CAP", G3 = "Number") # The same using list
levels(f3)

[1] "6G1" "G2" "G3"

f3[length(f3):(length(f3)+6)]<-"G3" ## add cases for the new level

table(f3)

3

G1 G2 G3

33 17 7

- Ordered factors

Finally, we know that ordered factors are different from factors, the first one are used to represent ordinal data,
and the second one to work with nominal data. At first, it does not make sense to change the order of levels for
ordered factors, but we can change its labels.

ordvar<-rep(c("Low", "Medium", "High"), times=c(7,2,4))

of<-ordered(ordvar, levels=c("Low", "Medium", "High"))
levels(of)

[1] "Low" "Medium" "High"

of1<-of

levels(of1)<- c("LOW", "MEDIUM", "HIGH")

levels(of1)

[1] "LOW" "MEDIUM" "HIGH"

is.ordered(of1)

[1] TRUE

of1

[1] LOW LOW LOW LOW LOW LOW LOW MEDIUM MEDIUM HIGH HIGH HIGH HIGH
Levels: LOW < MEDIUM < HIGH

Section 29.4: Rebuilding factors from zero

Problem

Factors are used to represent variables that take values from a set of categories, known as Levels in R. For example,
some experiment could be characterized by the energy level of a battery, with four levels: empty, low, normal, and
full. Then, for 5 different sampling sites, those levels could be identified, in those terms, as follows:

full, full, normal, empty, low

Typically, in databases or other information sources, the handling of these data is by arbitrary integer indices
associated with the categories or levels. If we assume that, for the given example, we would assign, the indices as
follows: 1 = empty, 2 = low, 3 = normal, 4 = full, then the 5 samples could be coded as:

4,43,1,2

It could happen that, from your source of information, e.g. a database, you only have the encoded list of integers,
and the catalog associating each integer with each level-keyword. How can a factor of R be reconstructed from that
information?

Solution

We will simulate a vector of 20 integers that represents the samples, each of which may have one of four different
values:

set.seed(18)
ii <- sample(1:4, 20, replace=T)
ii

[1143411323213412413141

The first step is to make a factor, from the previous sequence, in which the levels or categories are exactly the
numbers from 1 to 4.

fii <- factor(ii, levels=1:4) # it is necessary to indicate the numeric levels

fii

[1143411323213412413141
Levels: 1234

Now simply, you have to dress the factor already created with the index tags:

levels(fii) <- c("empty", "low", "normal", "full")
fii

[1] full normal full empty empty normal low normal low empty
[11] normal full empty low full empty normal empty full empty
Levels: empty low normal full

	Chapter 29: Factors
	Section 29.1: Consolidating Factor Levels with a List

	Chapter 29: Factors
	Section 29.2: Basic creation of factors

	Chapter 29: Factors
	Section 29.3: Changing and reordering factors

	Chapter 29: Factors
	Section 29.4: Rebuilding factors from zero

