
Chapter 28: Higher Order Components
Higher Order Components ("HOC" in short) is a react application design pattern that is used to enhance
components with reusable code. They enable to add functionality and behaviors to existing component classes.

A HOC is a pure javascript function that accepts a component as it's argument and returns a new component with
the extended functionality.

Section 28.1: Higher Order Component that checks for
authentication
Let's say we have a component that should only be displayed if the user is logged in.

So we create a HOC that checks for the authentication on each render():

AuthenticatedComponent.js

import React from "react";

export function requireAuthentication(Component) {
 return class AuthenticatedComponent extends React.Component {

 /**
 * Check if the user is authenticated, this.props.isAuthenticated
 * has to be set from your application logic (or use react-redux to retrieve it from global
state).
 */
 isAuthenticated() {
 return this.props.isAuthenticated;
 }

 /**
 * Render
 */
 render() {
 const loginErrorMessage = (
 <div>
 Please login in order to view this part of the
application.
 </div>
);

 return (
 <div>
 { this.isAuthenticated === true ? <Component {...this.props} /> :
loginErrorMessage }
 </div>
);
 }
 };
}

export default requireAuthentication;

We then just use this Higher Order Component in our components that should be hidden from anonymous users:

MyPrivateComponent.js

http://stackoverflow.com/questions/22268851/what-is-a-pure-function

import React from "react";
import {requireAuthentication} from "./AuthenticatedComponent";

export class MyPrivateComponent extends React.Component {
 /**
 * Render
 */
 render() {
 return (
 <div>
 My secret search, that is only viewable by authenticated users.
 </div>
);
 }
}

// Now wrap MyPrivateComponent with the requireAuthentication function
export default requireAuthentication(MyPrivateComponent);

This example is described in more detail here.

Section 28.2: Simple Higher Order Component
Let's say we want to console.log each time the component mounts:

hocLogger.js

export default function hocLogger(Component) {
 return class extends React.Component {
 componentDidMount() {
 console.log('Hey, we are mounted!');
 }
 render() {
 return <Component {...this.props} />;
 }
 }
}

Use this HOC in your code:

MyLoggedComponent.js

import React from "react";
import {hocLogger} from "./hocLogger";

export class MyLoggedComponent extends React.Component {
 render() {
 return (
 <div>
 This component gets logged to console on each mount.
 </div>
);
 }
}

// Now wrap MyLoggedComponent with the hocLogger function
export default hocLogger(MyLoggedComponent);

https://github.com/aspirantic/AuthenticatedComponent

	Chapter 28: Higher Order Components
	Section 28.1: Higher Order Component that checks for authentication

	Chapter 28: Higher Order Components
	Section 28.2: Simple Higher Order Component

