
Chapter 21: Pipe operators (%>% and
others)

lhs rhs
A value or the magrittr placeholder. A function call using the magrittr semantics

Pipe operators, available in magrittr, dplyr, and other R packages, process a data-object using a sequence of
operations by passing the result of one step as input for the next step using infix-operators rather than the more
typical R method of nested function calls.

Note that the intended aim of pipe operators is to increase human readability of written code. See Remarks section
for performance considerations.

Section 21.1: Basic use and chaining
The pipe operator, %>%, is used to insert an argument into a function. It is not a base feature of the language and
can only be used after attaching a package that provides it, such as magrittr. The pipe operator takes the left-hand
side (LHS) of the pipe and uses it as the first argument of the function on the right-hand side (RHS) of the pipe. For
example:

library(magrittr)

1:10 %>% mean
[1] 5.5

is equivalent to
mean(1:10)
[1] 5.5

The pipe can be used to replace a sequence of function calls. Multiple pipes allow us to read and write the
sequence from left to right, rather than from inside to out. For example, suppose we have years defined as a factor
but want to convert it to a numeric. To prevent possible information loss, we first convert to character and then to
numeric:

years <- factor(2008:2012)

nesting
as.numeric(as.character(years))

piping
years %>% as.character %>% as.numeric

If we don't want the LHS (Left Hand Side) used as the first argument on the RHS (Right Hand Side), there are
workarounds, such as naming the arguments or using . to indicate where the piped input goes.

example with grepl
its syntax:
grepl(pattern, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE)

note that the `substring` result is the *2nd* argument of grepl
grepl("Wo", substring("Hello World", 7, 11))

piping while naming other arguments
"Hello World" %>% substring(7, 11) %>% grepl(pattern = "Wo")

piping with .
"Hello World" %>% substring(7, 11) %>% grepl("Wo", .)

piping with . and curly braces
"Hello World" %>% substring(7, 11) %>% { c(paste('Hi', .)) }
#[1] "Hi World"

#using LHS multiple times in argument with curly braces and .
"Hello World" %>% substring(7, 11) %>% { c(paste(. ,'Hi', .)) }
#[1] "World Hi World"

Section 21.2: Functional sequences
Given a sequence of steps we use repeatedly, it's often handy to store it in a function. Pipes allow for saving such
functions in a readable format by starting a sequence with a dot as in:

. %>% RHS

As an example, suppose we have factor dates and want to extract the year:

library(magrittr) # needed to include the pipe operators
library(lubridate)
read_year <- . %>% as.character %>% as.Date %>% year

Creating a dataset
df <- data.frame(now = "2015-11-11", before = "2012-01-01")
now before
1 2015-11-11 2012-01-01

Example 1: applying `read_year` to a single character-vector
df$now %>% read_year
[1] 2015

Example 2: applying `read_year` to all columns of `df`
df %>% lapply(read_year) %>% as.data.frame # implicit `lapply(df, read_year)
now before
1 2015 2012

Example 3: same as above using `mutate_all`
library(dplyr)
df %>% mutate_all(funs(read_year))
if an older version of dplyr use `mutate_each`
now before
1 2015 2012

We can review the composition of the function by typing its name or using functions:

read_year
Functional sequence with the following components:
#
1. as.character(.)
2. as.Date(.)
3. year(.)
#
Use 'functions' to extract the individual functions.

We can also access each function by its position in the sequence:

read_year[[2]]

function (.)
as.Date(.)

Generally, this approach may be useful when clarity is more important than speed.

Section 21.3: Assignment with %<>%
The magrittr package contains a compound assignment infix-operator, %<>%, that updates a value by first piping it
into one or more rhs expressions and then assigning the result. This eliminates the need to type an object name
twice (once on each side of the assignment operator <-). %<>% must be the first infix-operator in a chain:

library(magrittr)
library(dplyr)

df <- mtcars

Instead of writing

df <- df %>% select(1:3) %>% filter(mpg > 20, cyl == 6)

or

df %>% select(1:3) %>% filter(mpg > 20, cyl == 6) -> df

The compound assignment operator will both pipe and reassign df:

df %<>% select(1:3) %>% filter(mpg > 20, cyl == 6)

Section 21.4: Exposing contents with %$%
The exposition pipe operator, %$%, exposes the column names as R symbols within the left-hand side object to the
right-hand side expression. This operator is handy when piping into functions that do not have a data argument
(unlike, say, lm) and that don't take a data.frame and column names as arguments (most of the main dplyr
functions).

The exposition pipe operator %$% allows a user to avoid breaking a pipeline when needing to refer to column
names. For instance, say you want to filter a data.frame and then run a correlation test on two columns with
cor.test:

library(magrittr)
library(dplyr)
mtcars %>%
 filter(wt > 2) %$%
 cor.test(hp, mpg)

#>
#> Pearson's product-moment correlation
#>
#> data: hp and mpg
#> t = -5.9546, df = 26, p-value = 2.768e-06
#> alternative hypothesis: true correlation is not equal to 0
#> 95 percent confidence interval:
#> -0.8825498 -0.5393217
#> sample estimates:
#> cor

#> -0.7595673

Here the standard %>% pipe passes the data.frame through to filter(), while the %$% pipe exposes the column
names to cor.test().

The exposition pipe works like a pipe-able version of the base R with() functions, and the same left-hand side
objects are accepted as inputs.

Section 21.5: Creating side eects with %T>%
Some functions in R produce a side effect (i.e. saving, printing, plotting, etc) and do not always return a meaningful
or desired value.

%T>% (tee operator) allows you to forward a value into a side-effect-producing function while keeping the original
lhs value intact. In other words: the tee operator works like %>%, except the return values is lhs itself, and not the
result of the rhs function/expression.

Example: Create, pipe, write, and return an object. If %>% were used in place of %T>% in this example, then the
variable all_letters would contain NULL rather than the value of the sorted object.

all_letters <- c(letters, LETTERS) %>%
 sort %T>%
 write.csv(file = "all_letters.csv")

read.csv("all_letters.csv") %>% head()
x
1 a
2 A
3 b
4 B
5 c
6 C

Warning: Piping an unnamed object to save() will produce an object named . when loaded into the workspace
with load(). However, a workaround using a helper function is possible (which can also be written inline as an
anonymous function).

all_letters <- c(letters, LETTERS) %>%
 sort %T>%
 save(file = "all_letters.RData")

load("all_letters.RData", e <- new.env())

get("all_letters", envir = e)
Error in get("all_letters", envir = e) : object 'all_letters' not found

get(".", envir = e)
[1] "a" "A" "b" "B" "c" "C" "d" "D" "e" "E" "f" "F" "g" "G" "h" "H" "i" "I" "j" "J"
[21] "k" "K" "l" "L" "m" "M" "n" "N" "o" "O" "p" "P" "q" "Q" "r" "R" "s" "S" "t" "T"
[41] "u" "U" "v" "V" "w" "W" "x" "X" "y" "Y" "z" "Z"

Work-around
save2 <- function(. = ., name, file = stop("'file' must be specified")) {
 assign(name, .)
 call_save <- call("save", ... = name, file = file)
 eval(call_save)
}

all_letters <- c(letters, LETTERS) %>%
 sort %T>%
 save2("all_letters", "all_letters.RData")

Section 21.6: Using the pipe with dplyr and ggplot2
The %>% operator can also be used to pipe the dplyr output into ggplot. This creates a unified exploratory data
analysis (EDA) pipeline that is easily customizable. This method is faster than doing the aggregations internally in
ggplot and has the added benefit of avoiding unnecessary intermediate variables.

library(dplyr)
library(ggplot)

diamonds %>%
 filter(depth > 60) %>%
 group_by(cut) %>%
 summarize(mean_price = mean(price)) %>%
 ggplot(aes(x = cut, y = mean_price)) +
 geom_bar(stat = "identity")

	Chapter 21: Pipe operators (%>% and others)
	Section 21.1: Basic use and chaining

	Chapter 21: Pipe operators (%>% and others)
	Section 21.2: Functional sequences

	Chapter 21: Pipe operators (%>% and others)
	Section 21.3: Assignment with %<>%
	Section 21.4: Exposing contents with %$%

	Chapter 21: Pipe operators (%>% and others)
	Section 21.5: Creating side eects with %T>%

	Chapter 21: Pipe operators (%>% and others)
	Section 21.6: Using the pipe with dplyr and ggplot2

