Chapter 20: Reodin? and writing tabular
data in plain-text files (CSV, TSV, etc.)

Parameter Details
file name of the CSV file to read
header logical: does the .csv file contain a header row with column names?
sep character: symbol that separates the cells on each row
guote character: symbol used to quote character strings
dec character: symbol used as decimal separator
fill logical: when TRUE, rows with unequal length are filled with blank fields.

comment.char character: character used as comment in the csv file. Lines preceded by this character are ignored.
extra arguments to be passed to read. table

Section 20.1: Importing .csv files

Importing using base R

Comma separated value files (CSVs) can be imported using read.csv, which wraps read.table, but usessep = ", "
to set the delimiter to a comma.

get the file path of a CSV included in R's utils package
csv_path <- system.file("misc", "exDIF.csv", package = "utils")

path will vary based on installation location
csv_path
[1] "/Library/Frameworks/R.framework/Resources/library/utils/misc/exDIF.csv"

df <- read.csv(csv_path)
df

Var1 Var2
1 2.70 A

2 3.14 B
3 10.00 A
4 -7.00 A

A user friendly option, file.choose, allows to browse through the directories:

df <- read.csv(file.choose())

Notes

¢ Unlike read.table, read.csv defaults to header = TRUE, and uses the first row as column names.

¢ All these functions will convert strings to factor class by default unless either as.is = TRUE or
stringsAsFactors = FALSE.

e The read.csv2 variant defaultsto sep = ";" and dec = ", " for use on data from countries where the
comma is used as a decimal point and the semicolon as a field separator.

Importing using packages

The readr package's read_csv function offers much faster performance, a progress bar for large files, and more
popular default options than standard read.csv, including stringsAsFactors = FALSE.

library(readr)
df <- read_csv(csv_path)

df

A tibble: 4 x 2
Var1l Var2

#i# <dbl> <chr>

1 2.70 A
2 3.14 B
3 10.00 A
4 -7.00 A

Section 20.2: Importing with data.table

The data.table package introduces the function fread. While it is similar to read. table, fread is usually faster and
more flexible, guessing the file's delimiter automatically.

get the file path of a CSV included in R's utils package
csv_path <- system.file("misc", "exDIF.csv", package = "utils")

path will vary based on R installation location
csv_path

[1] "/Library/Frameworks/R.framework/Resources/library/utils/misc/exDIF.csv"

dt <- fread(csv_path)

dt

Var1 Var2
1. 2.70 A
2: 3.14 B
3. 10.00 A
4. -7.00 A

Where argument input is a string representing:

¢ the filename (e.g. "filename.csv"),
¢ ashell command that acts on afile (e.g. "grep 'word' filename"), or
e theinputitself (e.g. "input1, input2 \n A, B \n C, D").

fread returns an object of class data.table that inherits from class data. frame, suitable for use with the
data.table's usage of []. To return an ordinary data.frame, set the data.table parameter to FALSE:

df <- fread(csv_path, data.table = FALSE)

class(df)
[1] "data.frame"

df
Var1 Var2
1 2.70 A

2 3.14 B
3 10.00 A
4 -7.00 A
Notes

¢ fread does not have all same options as read.table. One missing argument is na.comment, which may lead

http://www.inside-r.org/packages/cran/data.table/docs/fread

in unwanted behaviors if the source file contains #.
e fread uses only " for quote parameter.
e fread uses few (5) lines to guess variables types.

Section 20.3: Exporting .csv files
Exporting using base R
Data can be written to a CSV file using write.csv():

write.csv(mtcars, "mtcars.csv")

Commonly-specified parameters include row.names = FALSE andna = "".

Exporting using packages
readr: :write_csv is significantly faster than write.csv and does not write row names.

library(readr)

write_csv(mtcars, "mtcars.csv")

Section 20.4: Import multiple csv files

files = list.files(pattern="x.csv")
data_list = lapply(files, read.table, header = TRUE)

This read every file and adds it to a list. Afterwards, if all data.frame have the same structure they can be combined
into one big data.frame:

df <- do.call(rbind, data_list)

Section 20.5: Importing fixed-width files

Fixed-width files are text files in which columns are not separated by any character delimiter, like , or ;, but rather
have a fixed character length (width). Data is usually padded with white spaces.

An example:

Columnl Column2 Column3 Column4Column5
1647 pi "important’ 3.141596.28318
1731 euler ‘quite important' 2.718285.43656
1979 answer 'The Answer.' 42 42

Let's assume this data table exists in the local file constants. txt in the working directory.

Importing with base R
df <- read.fwf('constants.txt', widths = ¢(8,10,18,7,8), header = FALSE, skip = 1)

df
#> V1 V2 V3 V4 V5

#> 1 1647 pi "important’ 3.14159 6.28318
#> 2 1731 euler 'quite important'’ 2.71828 5.43656
#> 3 1979 answer 'The Answer.' 42 42 .0000

Note:

¢ Column titles don't need to be separated by a character (Column4Column5)
e The widths parameter defines the width of each column
¢ Non-separated headers are not readable with read. fwf()

Importing with readr
library(readr)

df <- read_fwf('constants.txt',
fwf_cols(Year = 8, Name = 10, Importance = 18, Value = 7, Doubled = 8),

skip = 1)
df
#> # A tibble: 3 x 5
#> Year Name Importance Value Doubled
#> <int> <chr> <chr> <dbl> <dbl>
#> 1 1647 pi "important' 3.14159 6.28318
#> 2 1731 euler 'quite important' 2.71828 5.43656
#> 3 1979 answer 'The Answer.' 42.00000 42.00000
Note:

e readr's fwf_x* helper functions offer alternative ways of specifying column lengths, including automatic
guessing (fwf_empty)

e readr is faster than base R

¢ Column titles cannot be automatically imported from data file

	Chapter 20: Reading and writing tabular data in plain-text ﬁles (CSV, TSV, etc.)
	Section 20.1: Importing .csv ﬁles

	Chapter 20: Reading and writing tabular data in plain-text ﬁles (CSV, TSV, etc.)
	Section 20.2: Importing with data.table

	Chapter 20: Reading and writing tabular data in plain-text ﬁles (CSV, TSV, etc.)
	Section 20.3: Exporting .csv ﬁles
	Section 20.4: Import multiple csv ﬁles
	Section 20.5: Importing ﬁxed-width ﬁles

