Chapter 6: Reading and writing strings
Section 6.1: Printing and displaying strings

R has several built-in functions that can be used to print or display information, but print and cat are the most
basic. As Ris an interpreted language, you can try these out directly in the R console:

print("Hello World")
#[1] "Hello World"
cat("Hello World\n")
#Hello World

Note the difference in both input and output for the two functions. (Note: there are no quote-characters in the
value of x created with x <- "Hello World".They are added by print at the output stage.)

cat takes one or more character vectors as arguments and prints them to the console. If the character vector has a
length greater than 1, arguments are separated by a space (by default):

cat(c("hello", "world", "\n"))
#hello world

Without the new-line character (\n) the output would be:

cat("Hello World")
#Hello World>

The prompt for the next command appears immediately after the output. (Some consoles such as RStudio's may
automatically append a newline to strings that do not end with a newline.)

print is an example of a "generic" function, which means the class of the first argument passed is detected and a
class-specific method is used to output. For a character vector like "Hello World", the resultis similar to the output
of cat. However, the character string is quoted and a number [1] is output to indicate the first element of a
character vector (In this case, the first and only element):

print("Hello World")
#[1] "Hello World"

This default print method is also what we see when we simply ask R to print a variable. Note how the output of
typing s is the same as calling print(s) or print("Hello World"):

s <- "Hello World"
s
#[1] "Hello World"

Or even without assigning it to anything:

"Hello World"
#[1] "Hello World"

If we add another character string as a second element of the vector (using the ¢ () function to concatenate the
elements together), then the behavior of print() looks quite a bit different from that of cat:

print(c("Hello World", "Here I am."))

https://en.wikipedia.org/wiki/Interpreted_language

#[1] "Hello World" "Here I am."

Observe that the ¢ () function does not do string-concatenation. (One needs to use paste for that purpose.) R
shows that the character vector has two elements by quoting them separately. If we have a vector long enough to
span multiple lines, R will print the index of the element starting each line, just as it prints [1] at the start of the first
line.

c("Hello World", "Here I am!", "This next string is really long.")
#[1] "Hello World" "Here I am!"
#[3] "This next string is really long."

The particular behavior of print depends on the class of the object passed to the function.

If we call print an object with a different class, such as "numeric" or "logical", the quotes are omitted from the
output to indicate we are dealing with an object that is not character class:

print(1)
#[1] 1
print(TRUE)
#[1] TRUE

Factor objects get printed in the same fashion as character variables which often creates ambiguity when console
output is used to display objects in SO question bodies. It is rare to use cat or print except in an interactive
context. Explicitly calling print() is particularly rare (unless you wanted to suppress the appearance of the quotes
or view an object that is returned as invisible by a function), as entering foo at the console is a shortcut for
print(foo). The interactive console of R is known as a REPL, a "read-eval-print-loop". The cat function is best saved
for special purposes (like writing output to an open file connection). Sometimes it is used inside functions (where
calls to print() are suppressed), however using cat() inside a function to generate output to the console is
bad practice. The preferred method is to message() or warning() for intermediate messages; they behave
similarly to cat but can be optionally suppressed by the end user. The final result should simply returned so that
the user can assign it to store it if necessary.

message('hello world")
#hello world
suppressMessages (message("hello world"))

Section 6.2: Capture output of operating system command

Functions which return a character vector

Base R has two functions for invoking a system command. Both require an additional parameter to capture the
output of the system command.

system("top -a -b -n 1", intern = TRUE)
system2("top", "-a -b -n 1", stdout = TRUE)

Both return a character vector.

[1] "top - ©8:52:03 up 70 days, 15:09, 0 users, load average: ©0.00, 0.00, 0.00"

[2] "Tasks: 125 total, 1 running, 124 sleeping, 0 stopped, 0 zombie"

[3] "Cpu(s): ©.9%us, 0.3%sy, 0.0%ni, 98.7%id, ©.1%wa, 0.0%hi, ©0.0%si, 0.0%st"
[4] "Mem: 12194312k total, 3613292k used, 8581020k free, 216940k buffers”

[5] "Swap: 12582908k total, 2334156k used, 10248752k free, 1682340k cached"

[6] ""

[7] " PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND "

[8] "11300 root 20 0@ 1278m 375m 3696 S 0.0 3.2 124:40.92 trala
[9] " 6093 userT 20 0 1817m 269m 1888 S 0.0 2.3 12:17.96 R !
[10] " 4949 user2 20 0 1917m 214m 1888 S 0.0 1.8 11:16.73 R !

For illustration, the UNIX command top -a -b -n 1is used. This is OS specific and may need to be
amended to run the examples on your computer.

Package devtools has a function to run a system command and capture the output without an additional
parameter. It also returns a character vector.

devtools: :system_output("top", "-a -b -n 1")

Functions which return a data frame

The fread function in package data.table allows to execute a shell command and to read the output like
read. table. It returns a data.table or a data.frame.

fread("top -a -b -n 1", check.names = TRUE)

PID USER PR NI VIRT RES SHR S X.CPU X.MEM TIME. COMMAND
1: 11300 root 20 © 1278m 375m 3696 S 0 3.2 124:40.92 trala
2: 6093 user1l 20 © 1817m 269m 1888 S 0 2.3 12:18.56 R
3: 4949 user2 20 © 1917m 214m 1888 S 0 1.8 11:17.33 R
4. 7922 user3 20 0 3094m 131m 1892 S 0 1.1 21:04.95 R

Note, that fread automatically has skipped the top 6 header lines.

Here the parameter check.names = TRUE was added to convert %CPU, %MEN, and TIME+ to syntactically
valid column names.

Section 6.3: Reading from or writing to a file connection

Not always we have liberty to read from or write to a local system path. For example if R code streaming map-
reduce must need to read and write to file connection. There can be other scenarios as well where one is going
beyond local system and with advent of cloud and big data, this is becoming increasingly common. One of the way
to do this is in logical sequence.

Establish a file connection to read with file() command ("r" is for read mode):

conn <- file("/path/example.data", "r") #when file is in local system
connl <- file("stdin", "r") #when just standard input/output for files are available

As this will establish just file connection, one can read the data from these file connections as follows:
line <- readLines(conn, n=1, warn=FALSE)

Here we are reading the data from file connection conn line by line as n=1. one can change value of n (say 10, 20
etc.) for reading data blocks for faster reading (10 or 20 lines block read in one go). To read complete file in one go
setn=-1.

After data processing or say model execution; one can write the results back to file connection using many different
commands like writeLines(), cat() etc. which are capable of writing to a file connection. However all of these
commands will leverage file connection established for writing. This could be done using file() command as:

conn2 <- file("/path/result.data", "w") #when file is in local system
conn3 <- file("stdout", "w") #when just standard input/output for files are available

Then write the data as follows:

writeLines("text",conn2, sep = "\n")

	Chapter 6: Reading and writing strings
	Section 6.1: Printing and displaying strings

	Chapter 6: Reading and writing strings
	Section 6.2: Capture output of operating system command

	Chapter 6: Reading and writing strings
	Section 6.3: Reading from or writing to a ﬁle connection

