
Learn C programming
Online Quiz
 Online Compiler
 Online Test

 Tutorials  Examples  Interview Questions  Library Functions

C - Types of Pointers

C - Pointers and Arrays

C - Dynamic Memory Allocation

C - Strings

C - Structures

C - Structures as function arguments

C - Unions

C - Enumeration

C - File Handling

C - Preprocessors

What are preprocessors directives in C?

Preprocessor directive classification

Inclusion Directives

Macro Directives

Conditional Directives

Preprocessior Operators

C - Header files

C - Error Handling

 Home / C / Preprocessors in C

Preprocessors in C

In this tutorial you will learn about preprocessors directives in C like # include, #define, #if, etc with the help of simple examples.

The C Pre-Processor directives in C, generally denoted by the term 'CPP', functions in three different ways. it functions as a

● text substitution tool that directs the compiler to replace a certain term with a set of instructions as defined. Since it permits the user to define macros, it is also

referred to as macro processors.

● insertion tool which inserts contents of other files into the source file.

● conditional tool for compilation by removing sections of codes from the file.

In C, we must compile a program first to run. The preprocessor is a special type of program, which processes certain parts of the program before it is processed by the

compiler. This can be visualized as follows:

A hash sign (#) denotes the preprocessor inclusion. Though we can use it in any part of a program, the normal practice is defining it right at the start of it.

The main preprocessor directives of the C language are classified into four groups based on the functionality.

Obviously, you have noticed that there is hardly any program where we have not used the #include preprocessor. Almost every program starts like:

#include <stdio.h>

main()

{

}

It implies that all the built-in functions that are written in the header file stdio. h can be used inside the program. Similarly, depending on the nature of the program we

can include both standard header files and user-defined header files in a program.

As discussed earlier in this tutorial, a macro is a code segment that can be substituted with a value. We can create macros using #define directive. The syntax is:

#define token value

Here the job of the preprocessor is to replace the identifier with the mentioned characters in each and every occasion in the program. Macros are classified into two

types:

OBJECT-LIKE MACROS

Macros that usually replace an identifier with a value are categorized under object-like macros. Most commonly used to represent numeric constants. Here is the

example:

#define LIMIT 10

Here, LIMIT is the macro name that replaces the value 10. observe the below example which illustrates the working of object-like macros.

#include<stdio.h>

#define LIMIT 10

int main()

{

 for(int i=1;i<=LIMIT;i++)

 {

 printf("%d\t",i);

 }

 return 0;

}

Here the compiler will read 'LIMIT' as 10 and process the program accordingly which leads to the following output:

1 2 3 4 5 6 7 8 9 10

FUNCTION LIKE MACROS OR PARAMETRISED MACROS

Parameterized form enhances the power of macros by a great deal, especially in performing mathematical calculations. It enables macro work like a function based on

variables. Suppose we want to determine the cube of a number. To do this, normally we have to create a function like:

int cube(int a)

{

 return a*a*a;

}

Using parameterized macros, we can do the same operation in a single line.

#define cube(a) ((a) * (a) *(a))

Here is the example:

#include<stdio.h>

#define CUBE(a) ((a)*(a)*(a))

int main()

{

 printf("%d",CUBE(10));

 return 0;

}

Output:

1000

We must remember that before using the macros in a program, we must define them using the directive #define

the undef directive in C is used to undefine a macro , clearly saying to cancel the macro which is already defined. The syntax is :

#undef token

Following program demonstrates the working of #undef directive.

#include<stdio.h>

#define CUBE(a) ((a)*(a)*(a))

#define LIMIT 20

#undef LIMIT

int main()

{

 printf("%d",CUBE(LIMIT));

 return 0;

}

In the above code snippet we have undefined the macro LIMIT and hence when we call the function the output will be obviously an error as follows

error: 'LIMIT' undeclared (first use in this function)|

Conditional directives in C programming are used to check whether a macro is already defined in the program or not and instructs the preprocessor either to include or

discard the set of codes. We can achieve conditional compilation with the help of directives #ifdef,#ifndef, #if, #else, #elif, #endif. Now lets learn about them one by one:

The #ifdef preprocessor directive checks the presence of a macro defined by #define and allow a segment of code to be compiled if the condition met. Otherwise the

portion of code will not be compiled. The prototype of #ifdef is as follows:

#ifdef MACRO

 //Set of codes

#endif

This directive checks the absence of a macro and executes the set of codes placed between ifndef and endif. The syntax is as follows:

#ifndef MACRO

 //Set of codes

#endif

Now let's observe how #ifdef and ifndef can be implemented in a program.

#include<stdio.h>

#define CUBE(a) ((a)*(a)*(a))

#define LIMIT 20

int main()

{

 #ifdef LIMIT

 printf("Given limit is %d",LIMIT);

 #endif // LIMIT

 #ifndef CUBE

 printf("Cube %d :",CUBE(3));

 #endif // CUBE

 return 0;

}

Output:

Given limit is 20

All these directives execute codes only if they meet the specified condition or expression.

The syntax of #if as follows:

#if macro_expression

 //Set of codes

#endif

Syntax of #else:

#if macro_expression

 //Set of codes for if part

#else

 // set of codes for else part

#endif

Syntax of #elif

#if macro_expression

 //Set of codes for if part

#elif

 // set of codes for elif part

#else

 //set of codes for else part

#endif

#include<stdio.h>

#include<conio.h>

#define AGE

int main()

{

 #if AGE >=18

 printf("YOU ARE ELIGIBLE FOR VOTING");

 #else

 printf("YOU ARE NOT ELIGIBLE FOR VOTING");

 #endif

}

There are different types of preprocessor operators. As of now, we will discuss the most used ones. Here they are:

Normally macros like #define work till it encounters a new line. Sometimes we need the macros to be large enough to accommodate all the characters and writing all

these in a single line hampers the readability of the program. The continuation operator ('\') tells the compiler to consider the next line as a part of the previous one. Here

is an example:

//Continuation Operator in C

#include<stdio.h>

define CUBE(a) \

 printf("Cube of %d is %d\n",a,((a)*(a)*(a)));

int main()

{

 CUBE(6);

 return 0;

}

Output:

Cube of 6 is 216

The STRINGIZE operator is one among the preprocessor operators which is used to manipulate strings. As the name suggests the stringize operator of a macro has the

ability of converting parameters of the argument to string constants. This operator only works with macros that take arguments only.

#define Macro_name(arg) #arg

Consider the following example:

#include <stdio.h>

#define display(text) #text

int main(void)

 {

 printf(display(WELCOME TO LEARN E TUTORIALS));

 return 0;

}

Output:

WELCOME TO LEARN E TUTORIALS

Explanation: In this code we are passing a macro to the printf() function. Since a macro gets compiled before the program, the preprocessor will expand the

display(WELCOME TO LEARN E TUTORIALS) into “WELCOME TO LEARN E TUTORIALS”. Later on we have our printf() function as printf(“WELCOME TO LEARN E

TUTORIALS”) and hence the output.

The token pasting operator is a preprocessor operator used for glueing two separate tokens given as arguments inside a macro. The notation '##' acts as the joiner by

combining tokens placed on its either sides. The ## operators can be used in following tokens:

1. identifiers like variable names, function names etc. 2. keywords and variable names like int, while, volatile etc. 3. data types like strings, numbers, characters, true or

false. 4. mathematical operators and punctuators like (,=,); etc.

Syntx

#define Macro_name(arg1,arg2,...,argN) arg1##arg2##...##argN

Examine the following program:

#include <stdio.h>

#define join(x, y) x##y

int main()

{

 printf("join(20, 30) = %d\n", join(20, 30));

 return 0;

}

Output:

join(20, 30) = 2030

The job of this operator is to check whether the identifier has been defined by #define or not. It has two binary outputs true and false. If the identifier is there, it returns 1.

Otherwise, it will flag '0'. Here is an example describing the application of #defined.

// defined operator

#include <stdio.h>

#if !defined (FUNCTION)

 #define FUNCTION "Hello World!!"

 #endif

int main(void)

 {

 printf("\n\t %s ", FUNCTION);

 return 0;

}

Output:

Hello World!!

Here, #defined will look for the 'FUNCTION' macro. If it is not found, a new one will be created. Later, under the main function, the compiler will read the word "FUNCTION"

as "Hello World!".

Explore More :

#line Directives

#pragma Directives

#error Directives

Related Programs VIEW ALL

read & find the transpose of a matrix swap the values of two integers

illustrate the concept of Unions convert days into years and weeks format

 Previous Next 

What are preprocessors directives in C?

Preprocessor directive classification

1.Inclusion Directives

2.Macro Directives

2.1 #define directives

Object -like Macros1

Function- like Macros2

2.2 #undef Directives

3.Conditional Directives

3.1 #ifdef Directive:

3.2 #ifndef Directive

3.3 #if, #else and #elif

Preprocessior Operator

i. THE MACRO CONTINUATION (\) OPERATOR

ii. THE STRINGIZE (#) OPERATOR:

iii. THE TOKEN PASTING (##) OPERATOR:

iv. THE DEFINED() OPERATOR:

Share This

 Facebook
  Tweet
  Mail
  Watsapp

 Previous Next 

Related Tutorials VIEW ALL

C Installation and Environment setup

Types of pointers in c

Structures as function arguments in C

Preprocessors in C

OtherTutorials VIEW ALL

Join Us

Python
Python

C
C

Java
Java

Machine Learning
Machine Learning

R
R

PHP
PHP

GO
GO

Artificial Intelligence
Artificial Intelligence

HTML
HTML

Cyber Security
Cyber Security

C++
C++

Data Science
Data Science

Contact mail... SUBSCRIBE

Tutorials

Python
C
Java
Machine Learning
R
PHP
GO
Artificial Intelligence
HTML
Cyber Security
C++
Data Science

Programs

Python Programs
C Programs
Java Programs
R Programs
PHP Programs
GO Programs
HTML Programs
C++ Programs

Company

learnetutorials2021@gmail.com

Blog

Privacy Policy

Prepare & Practice

Online Quiz

Online Compiler

Online Test

Interview Questions

© 2020 Learn eTutorials. All rights reserved.  
 
 
 













Home Tutorials Programs Blog Prepare & Practice
 

https://learnetutorials.com/c-programming/online-quiz
https://learnetutorials.com/c-programming/online-compiler
https://learnetutorials.com/c-programming/online-test
https://learnetutorials.com/c-programming
https://learnetutorials.com/c-programming/programs
https://learnetutorials.com/c-programming/interview-questions
https://learnetutorials.com/c-programming/library-functions
https://learnetutorials.com/c-programming/pointers
https://learnetutorials.com/c-programming/types-of-pointers
https://learnetutorials.com/c-programming/pointers-and-arrays
https://learnetutorials.com/c-programming/dynamic-memory-allocation
https://learnetutorials.com/c-programming/strings
https://learnetutorials.com/c-programming/structures
https://learnetutorials.com/c-programming/structures-as-function-arguments
https://learnetutorials.com/c-programming/unions
https://learnetutorials.com/c-programming/enumeration
https://learnetutorials.com/c-programming/file-handling
https://learnetutorials.com/c-programming/header-files
https://learnetutorials.com/c-programming/error-handling
https://learnetutorials.com/c-programming/preprocessor-directives
https://learnetutorials.com/
https://learnetutorials.com/c-programming
https://en.wikibooks.org/wiki/C_Programming/Preprocessor_directives_and_macros##line
https://en.wikibooks.org/wiki/C_Programming/Preprocessor_directives_and_macros##pragma
https://en.wikibooks.org/wiki/C_Programming/Preprocessor_directives_and_macros##error
https://learnetutorials.com/c-programming/programs
https://learnetutorials.com/c-programming/programs/find-transpose-matrix
https://learnetutorials.com/c-programming/programs/swap-integers
https://learnetutorials.com/c-programming/programs/concept-of-unions
https://learnetutorials.com/c-programming/programs/convert-days-to-year-week-format
https://learnetutorials.com/c-programming/file-handling
https://learnetutorials.com/c-programming/header-files
http://www.facebook.com/sharer.php?u=https://learnetutorials.com/c-programming/preprocessor-directives
http://twitter.com/share?url=https://learnetutorials.com/c-programming/preprocessor-directives&text=Simple%20Share%20Buttons&hashtags=simplesharebuttons
https://mail.google.com/mail/?view=cm&fs=1&tf=1&body=https://learnetutorials.com/c-programming/preprocessor-directives
https://api.whatsapp.com//send?text=https://learnetutorials.com/c-programming/preprocessor-directives
https://learnetutorials.com/c-programming/file-handling
https://learnetutorials.com/c-programming/header-files
https://learnetutorials.com/python
https://learnetutorials.com/c-programming
https://learnetutorials.com/c-programming/c-installation-environment-setup
https://learnetutorials.com/c-programming/types-of-pointers
https://learnetutorials.com/c-programming/structures-as-function-arguments
https://learnetutorials.com/c-programming/preprocessor-directives
https://learnetutorials.com/
https://learnetutorials.com/golang
https://learnetutorials.com/python
https://learnetutorials.com/c-programming
https://learnetutorials.com/java
https://learnetutorials.com/machine-learning
https://learnetutorials.com/r-programming
https://learnetutorials.com/php
https://learnetutorials.com/golang
https://learnetutorials.com/artificial-intelligence
https://learnetutorials.com/html
https://learnetutorials.com/cyber-security
https://learnetutorials.com/cpp-programming
https://learnetutorials.com/data-science
https://learnetutorials.com/python
https://learnetutorials.com/c-programming
https://learnetutorials.com/java
https://learnetutorials.com/machine-learning
https://learnetutorials.com/r-programming
https://learnetutorials.com/php
https://learnetutorials.com/golang
https://learnetutorials.com/artificial-intelligence
https://learnetutorials.com/html
https://learnetutorials.com/cyber-security
https://learnetutorials.com/cpp-programming
https://learnetutorials.com/data-science
https://learnetutorials.com/python/programs
https://learnetutorials.com/c-programming/programs
https://learnetutorials.com/java/programs
https://learnetutorials.com/r-programming/programs
https://learnetutorials.com/php/programs
https://learnetutorials.com/golang/programs
https://learnetutorials.com/html/programs
https://learnetutorials.com/cpp-programming/programs
mailto:learnetutorials2021@gmail.com
https://learnetutorials.com/blog
https://learnetutorials.com/privacy-policy
https://learnetutorials.com/online-quiz
https://learnetutorials.com/online-compiler
https://learnetutorials.com/online-test
https://learnetutorials.com/interview-questions
https://learnetutorials.com/c-programming/preprocessor-directives
https://www.facebook.com/learnetutorials2021/
https://www.instagram.com/learn_etutorials/
https://www.linkedin.com/company/79690310
https://www.youtube.com/channel/UCP3UxEJqRZkSDGL6-3ZC84w
https://twitter.com/Learnetutorials
https://learnetutorials.com/
https://learnetutorials.com/
javascript:void(0);
javascript:void(0);
https://learnetutorials.com/blog

