
Learn C programming
Online Quiz Online Compiler Online Test

 Tutorials Examples Interview Questions Library Functions

C - Dynamic Memory Allocation

C - Strings

String Constants

How to declare a string variable

How to initialize a string variable in C

How to traverse over a string

How to manipulate strings using pointers

String I/O Functions

How to pass a string as an arguments to a
function

String Library Functions

C - Structures

C - Structures as function arguments

C - Unions

C - Enumeration

C - File Handling

C - Preprocessors

C - Header files

C - Error Handling

 Home / C / Strings in C

Strings in C

In this tutorial, you will master everything about strings in the C programming language. Also, you will learn how to declare and initialize a string, various ways to input and

output strings, etc with the help of user-friendly examples. Also will cover some of the common library functions used to manipulate strings in C.

Unlike other programming languages, in C string is not an elementary data type, rather a collection of adjacent characters. We can generate it by character array to use

words and sentences in programs. As it is an array of characters, there includes a null character at the end of every word to indicate the termination of space. In C

programming, strings are written inside double quotation (" ") like:

● "Computer "

● "Programming in C"

● " "

A visual representation of string is as follows:

This is how the compiler takes a sequence of characters bounded in double-quotes and by default at the end will append a null character ‘\0.

We can use any proper variable name as the name of the string variable and declare it as an array.

The prototype of the string declaration is:

char string_name [SIZE];

We can calculate the number of maximum characters inside the string by 'SIZE'. If we store any variable in the string, the compiler adds a null ('\0') character at the end of

any string. So 'SIZE' will display the number, one more than the actual number of characters. If we declare,

char name[9];

the compiler will allow us to place 8 characters in the declared strings 'name' following a null character. The string will be allocated as

we can determine the value of the string variable during its declaration. There are different ways to initialize the string variables.

char city[] = “Madrid”;

char city[7] = “Madrid”;

char city[7] = {‘M’, ‘a’, ‘d’, ‘r’, ‘i’, ‘d’};

Here "MADRID" will be stored as

Since string belongs to an array type, it is not possible to assign values to a string variable separately after declaration as shown below program.

#include<stdio.h>

main()

{

 char c[10];

 c = "Learn C";

 printf("%s",c);

}

This example raises an error as follows.

error: assignment to expression with array type

In such cases, the string function strcpy() can be used.

In most programming languages, string traversal is an important aspect. By traversing it means the compiler allows us to determine the value of each array element

inside a string. While traversing a string, there is no need to know the size of the string before as the null character indicates the end of the sequence. If the null character

is not present at the end of the string, it will be treated as a mere collection of characters. It is because the compiler can not understand where the string ends.

From the following example. we can find-

#include <stdio.h>

main()

{

 char name [] = "Learn eTutorials";

 int i =0,count=0;

 while (name [i] != '\0')

 {

 if(name[i]=='a' || name[i] == 'e' || name[i] == 'i' || name[i] == 'u' || name[i] == 'o')

 {

 count ++;

 }

 printf ("%c ", name [i]);

 i++;

 }

 printf("\nNumber of Vowels in string %s is :%d",name,count);

}

Output:

L e a r n e T u t o r i a l s

Number of Vowels in string Learn eTutorials is :7

If we run the program, it will print "Learn eTutorials". Evidently, the while loop continues printing each character of the array element, till it encounters a null character.

Meanwhile, it counts the number of vowels in the given string.

Here %c is the format specifier used to print the string characters one by one while %s is the format specifier used to print the string literal.

From our previous tutorial, we are well educated about pointers in C. Now we can manipulate strings using pointers too. As strings are an array of characters, pointers on

string works in the same manner it does on arrays. It works by storing the address of the array (first element's) in the pointer.

Here is an example program.

#include <stdio.h>

int main() {

 char name[] = "Steve Jobs";

 printf("%c\n", *name);

 printf("%c\n", *(name+2));

 printf("%c\n", *(name+6));

 char *Ptr;

 Ptr = name;

 printf("\n%s", Ptr);

}

Output:

S

e

J

Steve Jobs

There is a set of I/O functions in C to access the input from the keyboard and display it on the screen as per requirement. Mostly used output functions are: printf(), puts(),

putchar()and input functions are scanf(), gets(), getchar(), getch(), getche().

Throughout the series of our tutorials, you have seen the use of scanf to read the input from the keyboard and printf to write the output. No surprise that scanf and

printf can be used to access strings also. But the only difference is that while using scanf you can only read the string till it encounters whitespace like newline, tab, or

space.

Here is the example that demonstrates the functioning of scanf and printf on string:

#include<stdio.h>

int main()

{

 char name[10];

 printf("Enter your full name:");

 scanf("%s",name);

 printf("Full Name :%s",name);

}

Output:

Enter your full name:Chris Jake

Full Name :Chris

From the output, it is evident that even though Chris Jake was given as the input, scanf only reads the first string Chris as it encounters whitespace thereafter. Here

%s is used as format specifiers to use scanf and printf .

In C, we can read and write strings using gets() and puts() function. The following example is a simple demonstration of the use of gets() and puts() function.

#include <stdio.h>

int main()

{

 char nm[40];

 puts ("Type anything you wish:");

 gets(nm);

 puts(nm);

}

Output:

Type anything you wish:

Welcome to Learn eTutorials... Let's learn C

Welcome to Learn eTutorials... Let's learn C

Here it is clearly visible that gets() reads and stores whatever we enter through the keyboard irrespective of its size. This may lead to a buffer overflow. So as to prevent

this C has developed another function called fgets() in which we need to specify the size limit.

#include <stdio.h>

int main()

{

 char nm[40];

 puts ("Type anything you wish:");

 fgets(nm,sizeof(nm),stdin);

 puts(nm);

}

Like arrays, we can also pass strings to a function. We can pass a string to a function as an argument with pointers or without pointers. Below shown examples illustrate

these two scenarios.

#include <stdio.h>

void printString(char str[]);

int main()

{

 char str[50];

 printf("Enter desired string: ");

 fgets(str, sizeof(str), stdin);

 printString(str);

 return 0;

}

void printString(char str[])

{

 printf("String printed as: ");

 puts(str);

}

Output:

Enter desired string: Welcome to Learn eTutorials

String printed as: Welcome to Learn eTutorials

In this example, since str is a character array the printString function expects a string array as its arguments hence we passed string as str[] and also used fgets and

puts function to read and write the string.

This could be a simple and error-free way of passing a string as an argument to a function. The above code snippet will be modified as follows :

#include <stdio.h>

void printString(char *strptr);

int main()

{

 char *strptr[50];

 printf("Enter desired string: ");

 fgets(strptr, sizeof(strptr), stdin);

 printString(strptr);

 return 0;

}

void printString(char *strptr)

{

 printf("String printed as: ");

 puts(strptr);

}

Output:

Enter desired string: Welcome to Learn eTutorials

String printed as: Welcome to Learn eTutorials

Here we have declared a character pointer so the printString() function expects the pointer variable as its argument. That means we are passing the address of the string

(strptr) to the function, consequently any changes made to the string in function will reflect back.

String functions are an inevitable part of a programming language as it makes your string manipulation easier just by simply calling the specific function and

implementing them wherever you need it in your piece of code. String manipulation in the sense of copying a string or concatenating string or any other functions can be

easily invoked with these predefined functions.

Some of the most often used string functions are given in the table below and its detail as follows:

Function Work of Function

strlen() Determines the length of string

strcpy() copies a string to another

strcat() concatenates(joins) two strings

strcmp() compares two strings

strlwr() converts string to lowercase

strupr() converts string to uppercase

As its name indicates, strlen() computes the length of the string without including the null character or end character(\0).

#include<stdio.h>

#include<string.h>

void main()

{

 char str[20]="Learn eTutorials";

 printf("Enter the length of string:%d\n",strlen(str));

 printf("Enter the size of string: %d\n",sizeof(str));

}

Output:

Enter the length of string:16

Enter the size of string: 20

From the example, you can evidently observe the difference between strlen and sizeof operator. Strlen determines the length of the string while the sizeof

operator returns the size of the string(total allocated space).

This function is used to copy one string to another. So strcpy() takes two arguments string 1 and string 2 and copies string 2 to string 1 as shown in the example below.

#include<stdio.h>

#include<string.h>

void main()

{

 char s1[30]="Learn eTutorials";

 char s2[30]="C programming Language ";

 printf("String copied to S1 is :%s\n",strcpy(s1,s2));

}

Output:

String copied to S1 is :C programming Language

Like strcpy() , this function also takes two arguments and returns the concatenated strings. The following example shows the concatenation of two strings.

#include<stdio.h>

#include<string.h>

void main()

{

 char s1[30]="C Programming";

 char s2[30]=" Language ";

 printf("Concatenated String is :%s\n",strcat(s1,s2));

}

Output:

Concatenated String is :C Programming Language

strcmp() function compares two strings and returns an integer value.

● If s1==s2 , it returns zero.

● If s1<s2, it returns a negative integer

● If s1>s2, it returns a positive integer.

#include<stdio.h>

#include<string.h>

void main()

{

 char s1[30]="Language";

 char s2[30]="Language";

 if (strcmp(s1,s2)==0)

 {

 printf("Strings are equal");

 }

 else

 {

 printf("Strings are different");

 }

}

Output:

Strings are equal

Related Programs VIEW ALL

sort n numbers in ascending order find sum of each row and each column of a matrix

create and display a singly linked list perform binary search to find a number

 Previous Next

String Constants

How to declare a string variable

How to initialize a string variable in C

ASSIGNING VALUES TO STRING VARIABLES

How to traverse over a string

How to manipulate strings using pointers

String I/O Functions

Read and write string using scanf and printf

Read and write string using gets() and puts()

How to pass a string as an argument to a function

Passing string without pointers

Passing string using Pointers

String Library Functions

1. Strlen()

2. Strcpy()

3. Strcat()

4. Strcmp()

Share This

 Facebook Tweet Mail Watsapp

 Previous Next

Related Tutorials VIEW ALL

Operators in C

Error Handling in C

Header files in C

Structures as function arguments in C

OtherTutorials VIEW ALL

Join Us

Python
Python

C
C

Java
Java

Machine Learning
Machine Learning

R
R

PHP
PHP

GO
GO

Artificial Intelligence
Artificial Intelligence

HTML
HTML

Cyber Security
Cyber Security

C++
C++

Data Science
Data Science

Contact mail... SUBSCRIBE

Tutorials

Python
C
Java
Machine Learning
R
PHP
GO
Artificial Intelligence
HTML
Cyber Security
C++
Data Science

Programs

Python Programs
C Programs
Java Programs
R Programs
PHP Programs
GO Programs
HTML Programs
C++ Programs

Company

learnetutorials2021@gmail.com

Blog

Privacy Policy

Prepare & Practice

Online Quiz

Online Compiler

Online Test

Interview Questions

© 2020 Learn eTutorials. All rights reserved.

Home Tutorials Programs Blog Prepare & Practice

https://learnetutorials.com/c-programming/online-quiz
https://learnetutorials.com/c-programming/online-compiler
https://learnetutorials.com/c-programming/online-test
https://learnetutorials.com/c-programming
https://learnetutorials.com/c-programming/programs
https://learnetutorials.com/c-programming/interview-questions
https://learnetutorials.com/c-programming/library-functions
https://learnetutorials.com/c-programming/pointers-and-arrays
https://learnetutorials.com/c-programming/dynamic-memory-allocation
https://learnetutorials.com/c-programming/structures
https://learnetutorials.com/c-programming/structures-as-function-arguments
https://learnetutorials.com/c-programming/unions
https://learnetutorials.com/c-programming/enumeration
https://learnetutorials.com/c-programming/file-handling
https://learnetutorials.com/c-programming/preprocessor-directives
https://learnetutorials.com/c-programming/header-files
https://learnetutorials.com/c-programming/error-handling
https://learnetutorials.com/c-programming/strings
https://learnetutorials.com/
https://learnetutorials.com/c-programming
https://learnetutorials.com/c-programming/programs
https://learnetutorials.com/c-programming/programs/ascending-sort
https://learnetutorials.com/c-programming/programs/row-column-matrix-sum
https://learnetutorials.com/c-programming/programs/display-elements-in-linked-list
https://learnetutorials.com/c-programming/programs/binary-search
https://learnetutorials.com/c-programming/dynamic-memory-allocation
https://learnetutorials.com/c-programming/structures
http://www.facebook.com/sharer.php?u=https://learnetutorials.com/c-programming/strings
http://twitter.com/share?url=https://learnetutorials.com/c-programming/strings&text=Simple%20Share%20Buttons&hashtags=simplesharebuttons
https://mail.google.com/mail/?view=cm&fs=1&tf=1&body=https://learnetutorials.com/c-programming/strings
https://api.whatsapp.com//send?text=https://learnetutorials.com/c-programming/strings
https://learnetutorials.com/c-programming/dynamic-memory-allocation
https://learnetutorials.com/c-programming/structures
https://learnetutorials.com/artificial-intelligence
https://learnetutorials.com/c-programming
https://learnetutorials.com/c-programming/operators
https://learnetutorials.com/c-programming/error-handling
https://learnetutorials.com/c-programming/header-files
https://learnetutorials.com/c-programming/structures-as-function-arguments
https://learnetutorials.com/
https://learnetutorials.com/python
https://learnetutorials.com/python
https://learnetutorials.com/c-programming
https://learnetutorials.com/java
https://learnetutorials.com/machine-learning
https://learnetutorials.com/r-programming
https://learnetutorials.com/php
https://learnetutorials.com/golang
https://learnetutorials.com/artificial-intelligence
https://learnetutorials.com/html
https://learnetutorials.com/cyber-security
https://learnetutorials.com/cpp-programming
https://learnetutorials.com/data-science
https://learnetutorials.com/python
https://learnetutorials.com/c-programming
https://learnetutorials.com/java
https://learnetutorials.com/machine-learning
https://learnetutorials.com/r-programming
https://learnetutorials.com/php
https://learnetutorials.com/golang
https://learnetutorials.com/artificial-intelligence
https://learnetutorials.com/html
https://learnetutorials.com/cyber-security
https://learnetutorials.com/cpp-programming
https://learnetutorials.com/data-science
https://learnetutorials.com/python/programs
https://learnetutorials.com/c-programming/programs
https://learnetutorials.com/java/programs
https://learnetutorials.com/r-programming/programs
https://learnetutorials.com/php/programs
https://learnetutorials.com/golang/programs
https://learnetutorials.com/html/programs
https://learnetutorials.com/cpp-programming/programs
mailto:learnetutorials2021@gmail.com
https://learnetutorials.com/blog
https://learnetutorials.com/privacy-policy
https://learnetutorials.com/online-quiz
https://learnetutorials.com/online-compiler
https://learnetutorials.com/online-test
https://learnetutorials.com/interview-questions
https://learnetutorials.com/c-programming/strings
https://www.facebook.com/learnetutorials2021/
https://www.instagram.com/learn_etutorials/
https://www.linkedin.com/company/79690310
https://www.youtube.com/channel/UCP3UxEJqRZkSDGL6-3ZC84w
https://twitter.com/Learnetutorials
https://learnetutorials.com/
https://learnetutorials.com/
javascript:void(0);
javascript:void(0);
https://learnetutorials.com/blog

