
Learn C programming
Online Quiz Online Compiler Online Test

 Tutorials Examples Interview Questions Library Functions

C - Storage classes

C - Array

C - Pointers

C - Types of Pointers

Null Pointers

Void Pointers

C - Pointers and Arrays

C - Dynamic Memory Allocation

C - Strings

C - Structures

C - Structures as function arguments

C - Unions

C - Enumeration

C - File Handling

C - Preprocessors

C - Header files

C - Error Handling

 Home / C / Types of pointers in c

Types of pointers in c

In this tutorial, you will see the common types of pointers in C and their syntax and uses. Also, you will walk through certain issues that arise while using these pointers

and how to solve them with the help of easy examples.

Before learning about null pointer in programming let us grasp some insight about null pointer in the context of computer memory. In memory, a null pointer is a simple

command used to instruct a program or OS to point to an empty location.

Null pointers in C are a unique category of pointers that do not point towards a specific address location. In the case of null pointers, we set a null value instead of a

memory address. The below picture shows a linked list with a null pointer.

The syntax of null pointer is :

data_type * pointer_variable = NULL;

In the programming language, ' NULL' keyword is specially reserved for this purpose. For different data types they are declared like:

int *pntr = NULL;

char *pntr = ‘\0’;

float *pntr = (float *)0;

Following program will give the idea of null pointer in C.

#include<stdio.h>

int main()

{

 int* vp = NULL;

 printf("vp contains value:%d\n",vp);

}

Output:

vp contains value:0

Unlike void pointers, Null pointers are type pointers as they specify the data type of pointer variable, but with a 'null' value. Hence it always has value 0. In the program vp

is a null pointer of integer type which contains the value 0.

From our previous tutorial we have learned that the data type of a pointer must be equal to the corresponding data type of the variable whose address is stored. For

example, an integer pointer must point to an integer variable. But what would happen when the programmer doesn’t know the type of variable beforehand.

Void pointers come in handy in such situations. A void pointer, in C programming, also known as generic pointers can point to variables of any data type though it does not

have any standard data type. Keyword void is used to create a void pointer. A void pointer can store addresses of any variable regardless of its data type.

Syntax of Void Pointer is :

void * pointer_variable ;

Example program of void pointer is given below;

#include <stdio.h>

int main()

{

 int x = 10;

 char c = 'C';

 void* vp;

 vp = &x;

 printf("vp stores address of integer variable x:%x\n",vp);

 printf("size of void pointer is : %d\n",sizeof(vp));

 vp = &c;

 printf("vp stores address of character variable c:%x\n",vp);

 printf("size of void pointer is : %d",sizeof(vp));

}

Output:

vp stores address of integer variable x:61fe14

size of void pointer is : 8

vp stores address of character variable c:61fe13

size of void pointer is : 8

When you examine the above code, we have two variables x of integer type and c of character type . vp is the pointer variable of type void. Hence vp has the ability to

store addresses of variables irrespective of their datatype. Initially vp stores the address of the integer variable x and later it stores the address of a variable c . Thus vp

enables the feature of reusability.

In our previous tutorial Pointers in C we have discussed dereferencing of a pointer. Now let see whether it is possible to dereference a void pointer. Observe the below

example:

#include<stdio.h>

void main()

{

int x = 200;

void* vp ;

vp = &x;

printf("%d", *vp);

}

Output:

Invalid use of void expression

#include<stdio.h>

void main()

{

int x = 200;

int* p ;

p = &x;

printf("%d", *p);

}

Output:

200

The above 2 code snippets are a comparison of dereferencing of a void pointer and a typical pointer. From the comparison we could understand that void pointer cannot

dereference like a typical pointer. Void pointers must be typecasted to proper data type prior to dereferencing as shown below.

#include<stdio.h>

void main()

{

int x = 200;

void* vp ;

vp = &x;

printf("%d", *(int *)vp); //type casting

Output:

200

Here,

● (int *) does the typecasting, where the void pointer vp is temporarily changed to an integer pointer and the life of typecasting exits when the evaluation of

expression completes.

● *(int *) does the dereferencing of typecast pointers.

Arithmetic pointers with void pointers

C does not support arithmetic pointers with void pointers. The reason behind that is void is not a true type and so sizeof(void) does not have a proper meaning. Since

pointer arithmetic changes the pointer value by multiples of sizeof the pointed object, a meaningful size is necessary. Here void fails to provide a correct size and thus is

not appropriate for the arithmetic pointer.

While learning null pointers we have come across the uninitialized pointers which are pointers pointing to some arbitrary location and causing a program to behave

wrongly or to crash. This type of uninitialized pointers is known as wild pointers in C.

int * p; // Wild pointer

To convert a wild pointer to a pointer we need to initialize them before use. This can be done in two ways as given in the example

#include<stdio.h>

#include

int main()

{

 int * ptr; //wild pointer

 int

 var;

 // Method 1

 var = 100;

 ptr = &

 var; // Now ptr is no longer a wild pointer printf("\n ptr c *(ptr));

 //Method 2 -creating memory allocation dynamically

 int * p = (int *) malloc(sizeof(int));

 * p = 100; printf("\n p c *(p));

 return 0;

}

Here ptr and p are two pointer variables that are initialized before their use. Initially, ptr was a wild pointer later on initialization changes to normal pointer as it points to

memory location. Yet another way to avoid wild pointer is by dynamically allocating the pointers using calloc , malloc or realloc.

The word Dangling means “hanging loosely” and we know pointers are references to memory location. So when a pointer points to an invalid or unreserved memory

location it is called a dangling pointer. More precisely, it is a pointer that was active at some point of time in the program execution and currently is not pointing to an

object.

Dangling pointers raise at the time of object destruction, specifically when an object is deleted or de-allocated from the memory without modifying the value of the

pointer so that the pointer still references the original memory location which is deleted.

The above figure shows pointer A and pointer B points to the memory of allocated objects A and B respectively. On the other hand, the pointer C points to the memory of

a deleted object, Hence it is named a dangling pointer.

The use of the dangling pointers can lead to a number of different types of problems, such as:

● Unpredictable behavior

● Segmentation faults / general protection faults

● Bugs due to silent corruption of unrelated data

CAUSE OF DANGLING POINTERS

1. De- allocating or free variable memory

#include<stdio.h>

#include

int main()

{

 int * ptr;

 //creating memory allocation dynamically

 ptr = (int *) malloc(sizeof(int));

 printf("\n Memory allocated...");

 * ptr = 100; printf("\n ptr c *(ptr));

 //Now ptr becomes a dangling pointer

 free(ptr);

 printf("\n Memory is freed ...\n "); printf("ptr c *(ptr));

 //Now ptr is no longer a dangling pointer

 ptr = NULL

 return 0;

}

Output:

 Memory allocated... ptr c

 Memory is freed ptr c

In this example, after the free() function is executed the memory of ptr gets deallocated and hence becomes a dangling pointer.

#include<stdio.h>

int main()

{

 char **StrPtr;

 {

 char *StrVar = "Hai";

 StrPtr = &StrVar;

 }

 // Since StrVar falls out of scope StrPtr is now a dangling pointer

 printf("%s", *StrPtr);

}

In this example, we have initially created a pointer variable StrPtr . Then we create another variable, StrVar whose visibility is constrained to local block and hence is

non-visible in Outer Block. The StrPtr containing the address of StrVar becomes a dangling pointer when it comes out of the inner block as StrPtr is still pointing to an

invalid memory location in the Outer block.

 #include <stdio.h>

 int * func() {

 int l = 10;

 return &l;

 }

 int main() {

 int * p = func();

 printf("%d", * p);

 return 0;

 }

In this example firstly we created a pointer variable that stores the return value of func(). When func() is called, the value of the local variable “l” will be returned. But when

it comes to the main function, the value of l is no longer visible and hence the p becomes a dangling pointer.

To avoid the occurrence of dangling pointers, initialize the respective pointer with NULL value after it is deleted or deallocated from the memory. This we have already

seen in the section of Null pointers.

Related Programs VIEW ALL

find the length of the string find the area of a triangle with three sides

count number of even and odd elements in an array create a file & store information of a person

 Previous Next

NULL POINTERS

Why null pointer is used?

The first and foremost use of a null pointer is to initialize a pointer variable

Typically when a pointer variable is declared like below and is not initialized,

int * p; // uninitialized pointer

What actually happens is it will point to some random memory address and stores some garbage values. This garbage value can be a reason to crash

the program when you attempt to use this pointer or to pass in the function as an argument. To avoid this always initialize the pointer with a Null value as

shown below.

int * p = NULL; // null pointer

1

Secondly to pass a null pointer as an argument in the function

In case if you don't want to pass a valid memory address to function you can use a null pointer as its argument

float funct(int *p)

{

::::::::::::

}

funct(NULL);

2

Validate pointers with a null value

Before accessing a pointer always make sure that the pointer variable is initialized either to a valid memory address or null value. Otherwise unexpected

errors may cause and will be a hassle.

#include<stdio.h>

void sum(int *p2)

{

 if(p2 == NULL)

 {

 //Handle NULL pointer

 return;

 }

 else

 {

 //function body

 }

}

void main()

{

 int *p1 = NULL;

 sum(p1);

}

In the above code, p1 is a null pointer that is passed as an argument in function sum. The function initially checks whether the argument passed is a null

pointer or not. if it is a null pointer then the code will handle the null pointer. Under other conditions, the function body will be executed.

3

To avoid dangling pointer cases while deallocating, you can use null pointers

Consider the case where you have a pointer that stores the memory address of the variable and contains data. If you wish to delete the data to free the

memory what will happen to the pointer? The pointer will remain as it is and will point to the same memory location even after deleting the data. These

types of pointers are known as dangling pointers. To circumvent this situation, the best solution is to assign the pointer to NULL.

#include<stdio.h>

void main()

{

 int *p = (int *)malloc(SIZE);

 //.

 //.

 free(p);

 //pointer p is now a dangling pointer

 p=NULL;

 //Now p is a null pointer not a dangling pointer

}

The above snippet tells that after the free() method is executed the data in the pointer is freed and the pointer becomes a dangling pointer. When the

pointer is set to a null value it changes to a null pointer. You can view this while dealing with data structures like linked lists and trees.

4

VOID POINTERS

Dereferencing a void pointer

WILD POINTERS

DANGLING POINTERS

2. Variable goes out of Scope

3. Returning local variable in Function Call

HOW TO AVOID THE OCCURRENCE OF DANGLING POINTERS

Share This

 Facebook Tweet Mail Watsapp

 Previous Next

Related Tutorials VIEW ALL

Call by value VS Call by reference

Dynamic Memory Allocation in C

Compilation and Execution in C

Unions

OtherTutorials VIEW ALL

Join Us

Python
Python

C
C

Java
Java

Machine Learning
Machine Learning

R
R

PHP
PHP

GO
GO

Artificial Intelligence
Artificial Intelligence

HTML
HTML

Cyber Security
Cyber Security

C++
C++

Data Science
Data Science

Contact mail... SUBSCRIBE

Tutorials

Python
C
Java
Machine Learning
R
PHP
GO
Artificial Intelligence
HTML
Cyber Security
C++
Data Science

Programs

Python Programs
C Programs
Java Programs
R Programs
PHP Programs
GO Programs
HTML Programs
C++ Programs

Company

learnetutorials2021@gmail.com

Blog

Privacy Policy

Prepare & Practice

Online Quiz

Online Compiler

Online Test

Interview Questions

© 2020 Learn eTutorials. All rights reserved.

Home Tutorials Programs Blog Prepare & Practice

https://learnetutorials.com/c-programming/online-quiz
https://learnetutorials.com/c-programming/online-compiler
https://learnetutorials.com/c-programming/online-test
https://learnetutorials.com/c-programming
https://learnetutorials.com/c-programming/programs
https://learnetutorials.com/c-programming/interview-questions
https://learnetutorials.com/c-programming/library-functions
https://learnetutorials.com/c-programming/recursion-tutorials
https://learnetutorials.com/c-programming/storage-classes
https://learnetutorials.com/c-programming/array
https://learnetutorials.com/c-programming/pointers
https://learnetutorials.com/c-programming/pointers-and-arrays
https://learnetutorials.com/c-programming/dynamic-memory-allocation
https://learnetutorials.com/c-programming/strings
https://learnetutorials.com/c-programming/structures
https://learnetutorials.com/c-programming/structures-as-function-arguments
https://learnetutorials.com/c-programming/unions
https://learnetutorials.com/c-programming/enumeration
https://learnetutorials.com/c-programming/file-handling
https://learnetutorials.com/c-programming/preprocessor-directives
https://learnetutorials.com/c-programming/header-files
https://learnetutorials.com/c-programming/error-handling
https://learnetutorials.com/c-programming/types-of-pointers
https://learnetutorials.com/
https://learnetutorials.com/c-programming
https://learnetutorials.com/c-programming/pointers
https://learnetutorials.com/c-programming/programs
https://learnetutorials.com/c-programming/programs/length-of-string
https://learnetutorials.com/c-programming/programs/find-triangle-area
https://learnetutorials.com/c-programming/programs/count-even-odd-elements-in-array
https://learnetutorials.com/c-programming/programs/create-file-store-information
https://learnetutorials.com/c-programming/pointers
https://learnetutorials.com/c-programming/pointers-and-arrays
http://www.facebook.com/sharer.php?u=https://learnetutorials.com/c-programming/types-of-pointers
http://twitter.com/share?url=https://learnetutorials.com/c-programming/types-of-pointers&text=Simple%20Share%20Buttons&hashtags=simplesharebuttons
https://mail.google.com/mail/?view=cm&fs=1&tf=1&body=https://learnetutorials.com/c-programming/types-of-pointers
https://api.whatsapp.com//send?text=https://learnetutorials.com/c-programming/types-of-pointers
https://learnetutorials.com/c-programming/pointers
https://learnetutorials.com/c-programming/pointers-and-arrays
https://learnetutorials.com/python
https://learnetutorials.com/c-programming
https://learnetutorials.com/c-programming/call-by-value-and-call-by-reference
https://learnetutorials.com/c-programming/dynamic-memory-allocation
https://learnetutorials.com/c-programming/compilation-execution
https://learnetutorials.com/c-programming/unions
https://learnetutorials.com/
https://learnetutorials.com/machine-learning
https://learnetutorials.com/python
https://learnetutorials.com/c-programming
https://learnetutorials.com/java
https://learnetutorials.com/machine-learning
https://learnetutorials.com/r-programming
https://learnetutorials.com/php
https://learnetutorials.com/golang
https://learnetutorials.com/artificial-intelligence
https://learnetutorials.com/html
https://learnetutorials.com/cyber-security
https://learnetutorials.com/cpp-programming
https://learnetutorials.com/data-science
https://learnetutorials.com/python
https://learnetutorials.com/c-programming
https://learnetutorials.com/java
https://learnetutorials.com/machine-learning
https://learnetutorials.com/r-programming
https://learnetutorials.com/php
https://learnetutorials.com/golang
https://learnetutorials.com/artificial-intelligence
https://learnetutorials.com/html
https://learnetutorials.com/cyber-security
https://learnetutorials.com/cpp-programming
https://learnetutorials.com/data-science
https://learnetutorials.com/python/programs
https://learnetutorials.com/c-programming/programs
https://learnetutorials.com/java/programs
https://learnetutorials.com/r-programming/programs
https://learnetutorials.com/php/programs
https://learnetutorials.com/golang/programs
https://learnetutorials.com/html/programs
https://learnetutorials.com/cpp-programming/programs
mailto:learnetutorials2021@gmail.com
https://learnetutorials.com/blog
https://learnetutorials.com/privacy-policy
https://learnetutorials.com/online-quiz
https://learnetutorials.com/online-compiler
https://learnetutorials.com/online-test
https://learnetutorials.com/interview-questions
https://learnetutorials.com/c-programming/types-of-pointers
https://www.facebook.com/learnetutorials2021/
https://www.instagram.com/learn_etutorials/
https://www.linkedin.com/company/79690310
https://www.youtube.com/channel/UCP3UxEJqRZkSDGL6-3ZC84w
https://twitter.com/Learnetutorials
https://learnetutorials.com/
https://learnetutorials.com/
javascript:void(0);
javascript:void(0);
https://learnetutorials.com/blog

