
Learn C programming
Online Quiz
 Online Compiler
 Online Test

 Tutorials  Examples  Interview Questions  Library Functions

C - Literals and Constants

C - Operators

Arithmetic Operators

Relational Operators

Logical Operators

Assignment Operators

Special Operators

Operators Precedence:

C - Decision Making

C - Loops

C - Loop Control Statements

C - Functions

C - Call by value vs Call by reference

C - Recursion

C - Storage classes

C - Array

C - Pointers

C - Types of Pointers

C - Pointers and Arrays

 Home / C / Operators in C

Operators in C

In this tutorial you will grasp the skill to work with different operators used in C to perform logical and arithmetical calculations with the aid of simple and easy examples.

Operators are unique symbols that perform some sort of computation. The objects or values on which operators act are known as operands and the combination of

operators and operands are termed as expressions in c.

C language support a wide range of built-in operators to manipulate data and values and hence is broadly categorised as follows:

Like real life mathematics, arithmetic operators of C do the job of division, multiplication, addition, and subtraction. The involved operators are '/', '*', '+' and '-' respectively.

Except these, there are other three operators modulus, increment and decrement operator.Modulus or '%' outputs the remainder of any division of numbers.

Operator Meaning Description Example

+ Addition Adds two operands or unary plus 10+2=12

- Subtraction Subtracts right operand from left operand or unary minus 10-2=8

* Multiplication Multiplies two operands 10*2=20

/ Division Divides left operand by right operand 10/2=5

% Modulus Remainder after division 10%2=0

++ Increment increases value by one unit ++a or a++ = a+1

-- Decrement decreases value by one unit --b or b-- = b-1

#include <stdio.h>

int main()

{

 int x = 7,y = 3, z;

 z = x+y;

 printf("Sum: x+y = %d \n",z);

 z = x-y;

 printf("Difference: x-y = %d \n",z);

 z = x*y;

 printf("Product: x*y = %d \n",z);

 z = x/y;

 printf("Quotient: x/y = %d \n",z);

 z = x%y;

 printf("Remainder: x%y = %d \n",z);

 return 0;

}

Sum: x+y = 10

Difference: x-y = 4

Product: x*y = 21

Quotient: x/y = 2

Remainder: xy = 1

Increment operator '++' increases the value of integer by one unit, whereas the decrement operator '--' decreases the same by one unit. These operators can be either

prefixed or postfixed with the operand and are used extensively in a different type of loops in C .

Example of Increment and Decrement Operators

#include <stdio.h>

int main()

{

 int x = 7,y = 3;

 printf("Increment: ++x = %d \n",++x);

 printf("Decrement: --y = %d \n",--y);

 return 0;

}

Output:

Increment: ++x = 8

Decrement: --y = 2

Relational operators do compare the data to give binary outputs i.e. True or False. Here are the six operators demonstrated using the two operands a and b.

Operator Meaning Description Examples

== Equal to Returns True if two operands are equal a==b

!= Not Equal to Returns True if two operands are not equal a!=b

> Greater than Returns True if left operands is greater than the right a>b

< Less than Returns True if left operand is less than the right a= Greater than or equal to Returns True if left operands is greater than or equal to the right a>=b

<= Less than or equal to Returns True if left operand is less than or equal to the right a<=b

#include <stdio.h>

int main()

{

 int x = 7,y = 3,z;

 z = x>y;

 printf("%d is greater than %d is %d\n",x,y,z);

 z = x=y;

 printf("%d is greater than %d is %d\n",x,y,z);

 z = x<=y;

 printf("%d is greater than %d is %d\n",x,y,z);

 z = x==y;

 printf("%d is greater than %d is %d\n",x,y,z);

 z = x!=y;

 printf("%d is greater than %d is %d \n",x,y,z);

 return 0;

}

Output:

7 is greater than 3 is 1

7 is less than 3 is 0

7 is greater than 3 is 1

7 is greater than 3 is 0

7 is greater than 3 is 0

7 is greater than 3 is 1

These operators perform binary operations to process data at machine level (logic gates like AND, OR, NOR, NAND etc.). If the result is true, it is denoted by returning '1'.

The negative result is expressed by '0'. Here is the description of three basic logical operators in C which are extensively used in decision making.

Operator Meaning Description Example

&& Logical AND/ Conjunction Returns True if and only if both statements are true X and Y

|| Logical OR / Disjunction Returns True if any of the statement is true X or Y

! Logical NOT/ Negation Returns true if operand is a negation not X

For better understanding of Logical operators you should know about the truth table.

The complement of AND is called NAND and OR is called NOR. They are used in conjunction with other operators like A! &B, A! =B etc.

#include <stdio.h>

int main()

{

 int x = 7,y = 3,z;

 z = (x==7)&&(x>y);

 printf("(x==7)&&(x>y) is %d\n",z);

 z = (x==7)||(x>y);

 printf("(x==7)||(x>y) is %d\n",z);

 z = (x!=7)||(y!=3);

 printf("(x!=7)&&(y!=) is %d\n",z);

 return 0;

}

Output:

(x==7)&&(x>y) is 1

(x==7)||(x>y) is 1

(x!=7)&&(y!=) is 0

Common bitwise operators are listed in the below table.Binary representation of 3 is 0000 0011 and that of 4 is 0000 0100.

Operators Meaning Description Example

& Binary AND Result is 1 if both operands are true otherwise 0 3&4 =0

| Binary OR Result is 1if any one operand is true otherwise 0 3|4=7

^ Binary XOR Result is 1 if it's both operands are different and 0 if both operands are same 3^4=7

~ Binary Ones Complement Result is the negation of the operand ~3= -(4)

<< Binary Left Shift Aligns the bits to the left 3<<2 = 12

>> Binary Right Shift Aligns the bits to the right 3>>2 = 0

The first operator '&' is of AND type which copies any bit to result if the bit exists in both operands. '|' functions as OR operator. It replicates a bit,- if it exists in either or

both of the operands. '^' denotes XOR operation. It is positive if it exists in any of the operands but not the both. Except these, there is a complement operator which has

the effect of a flipping bit. It is denoted by the '~' symbol.

#include <stdio.h>

int main()

{

 int x = 3,y = 4,z;

 z = x&y;

 printf("x&y is %d\n",z);

 z = x|y;

 printf("x&y is %d\n",z);

 z = x^y;

 printf("x&y is %d\n",z);

 printf("x&y is %d\n",~x);

 return 0;

}

Output:

x&y is 0

x|y is 7

x^y is 7

~x is -4

Bitwise Shift operators '<<' and '>>' are called binary left shift and the right shift operators respectively. The value of the operands is the left side of moved by the amount

specified on the right-hand side of the operator.

#include <stdio.h>

int main()

{

 int x = 3;

 printf("x<<1 is %d\n",x<<1);

 printf("x<<2 is %d\n",x<<2);

 printf("x<<2 is %d\n\n",x<<3);

 printf("x>>1 is %d\n",x>>1);

 printf("x>>2 is %d\n",x>>2);

 printf("x>>3 is %d\n",x>>3);

 return 0;

}

Output:

x<<1 is 6

x<<2 is 12

x<<2 is 24

x>>1 is 1

x>>2 is 0

x>>2 is 0

Since bitwise operators are used to manipulate bit level datas they are not common in the real world. However they reign the world of low level or otherwise called

machine language. As we all know low level operations use the binary format of 0 and 1 to manipulate datas. Listed below are some of the areas in which bitwise

operators are used.

● Primarily used in embedded system

● Data Compression - winrar,zip

● Encryption

● Networking

● Hardware manipulation

● Graphics

As its name indicates , assignment operators are used to assign values to variables. '=' (equals) is the most basic type of them assigning the value at the right-hand side

to the left-hand side. C=A+B will impose the value of (A+B) to C. Below table gives you the other assignment operators used in C to perform arithmetic operations.

Operators Example Meaning

= a = 10

+= a+=10 a=a+10

-= a-=10 a=a-10

= a=10 a=a*10

/= a/=10 a=a/10

%= a%=10 a=a

#include <stdio.h>

int main()

{

 int x = 10, a;

 a = x;

 printf("a = %d\n", a);

 a += x;

 printf("a = %d\n", a);

 a -= x;

 printf("a = %d\n", a);

 a *= x;

 printf("a = %d\n", a);

 a /= x;

 printf("a = %d\n", a);

 a %= x;

 printf("a = %d\n", a);

 return 0;

}

Output:

a = 10

a = 20

a = 10

a = 100

a = 10

a = 0

This unary operator returns the size of the operand in bytes. For example, it will return 4 in case of integers. It is very helpful in space management in large programs.

#include <stdio.h>

void main()

{

int a;

int short b;

short c;

int long d;

long e;

 printf(" Size of a is %d\n",sizeof(a));

 printf(" Size of b is %d\n",sizeof(b));

 printf(" Size of c is %d\n",sizeof(c));

 printf(" Size of d is %d\n",sizeof(d));

 printf(" Size of e is %d\n",sizeof(e));

}

Output:

 Size of a is 4

 Size of b is 2

 Size of c is 2

 Size of d is 4

 Size of e is 4

These are some uniquely defined operators in c called ternary operators. '?:' is also known as a conditional operator is widely used in decision making and routing the flow

of program execution in the desired direction. The syntax is usually (exp)?A:B which means if the expression is true it returns A otherwise returns B. The following

program illustrates this:

#include <stdio.h>

void main()

{

 int x=7,z;

 z=(x==8)? "True" : "False" ;

 printf("Value of x is 7 ? %s\n",z);

}

Output:

 Value of x is 7 ? False

Reference operator will return the address of any variable writing the variable name followed by it. You will see the use of this reference operator in the upcoming tutorial

- pointers in C.

Widely used operator '*' denoting pointer variables fall among this category which you will learn later in our tutorial of pointers.

Now We have grasped the knowledge of nearly all the operators used in C. However we often fall in situations, where we have to work with different types of operators

simultaneously. If we do not follow the right sequence of applying them, the program will end up crashing.

Operator precedence refers to the order of operators in which they evaluate an expression. Here is the sequence maintained by the compiler that we must abide by:

Related Programs VIEW ALL

delete a specific element from an array check whether a number is negative or positive

check a string is Palindrome or not generate Fibonacci series up to given number

 Previous Next 

Arithmetic Operators:

Example of Arithmetic Operators

Increment and Decrement Operators

Example of Increment and Decrement Operators

Relational Operators:

Example of Relational Operators

Logical Operators:

Truth Table for Logical Operators

Example of Logical Operators

Example of Bitwise Operators

Shift Operators in C

Bitwise Shift Left Representation

Bitwise Shift Left Representation

Example of Bitwise Shift Operators

Where do we use bitwise operators?

Assignment Operators

Example of Assignment Operators

Special Operators

sizeof Operator

Example of Sizeof Operator

Conditional/ Ternary Operator(?:):

Example of Conditional Operators

Reference or pointer Operator (&) :

Dereference Operator(*):

Operators Precedence:

Postfix () [] ->1

Unary2

Multiplication/ division 3

Addition/subtraction 4

Shift 5

Relational 6

Equality 7

Bitwise AND8

Bitwise XOR 9

Bitwise OR10

Logical AND11

Logical OR12

Conditional13

Assignment14

Share This

 Facebook
  Tweet
  Mail
  Watsapp

 Previous Next 

Related Tutorials VIEW ALL

Strings in C

Types of pointers in c

File Handling in C

Loop Control Statements in C

OtherTutorials VIEW ALL

Join Us

Python
Python

C
C

Java
Java

Machine Learning
Machine Learning

R
R

PHP
PHP

GO
GO

Artificial Intelligence
Artificial Intelligence

HTML
HTML

Cyber Security
Cyber Security

C++
C++

Data Science
Data Science

Contact mail... SUBSCRIBE

Tutorials

Python
C
Java
Machine Learning
R
PHP
GO
Artificial Intelligence
HTML
Cyber Security
C++
Data Science

Programs

Python Programs
C Programs
Java Programs
R Programs
PHP Programs
GO Programs
HTML Programs
C++ Programs

Company

learnetutorials2021@gmail.com

Blog

Privacy Policy

Prepare & Practice

Online Quiz

Online Compiler

Online Test

Interview Questions

© 2020 Learn eTutorials. All rights reserved.  
 
 
 













Home Tutorials Programs Blog Prepare & Practice
 

https://learnetutorials.com/c-programming/online-quiz
https://learnetutorials.com/c-programming/online-compiler
https://learnetutorials.com/c-programming/online-test
https://learnetutorials.com/c-programming
https://learnetutorials.com/c-programming/programs
https://learnetutorials.com/c-programming/interview-questions
https://learnetutorials.com/c-programming/library-functions
https://learnetutorials.com/c-programming/constants-literals
https://learnetutorials.com/c-programming/decision-making-statements
https://learnetutorials.com/c-programming/loops
https://learnetutorials.com/c-programming/loop-control-statements
https://learnetutorials.com/c-programming/functions
https://learnetutorials.com/c-programming/call-by-value-and-call-by-reference
https://learnetutorials.com/c-programming/recursion-tutorials
https://learnetutorials.com/c-programming/storage-classes
https://learnetutorials.com/c-programming/array
https://learnetutorials.com/c-programming/pointers
https://learnetutorials.com/c-programming/types-of-pointers
https://learnetutorials.com/c-programming/pointers-and-arrays
https://learnetutorials.com/c-programming/operators
https://learnetutorials.com/
https://learnetutorials.com/c-programming
https://learnetutorials.com/c-programming/programs
https://learnetutorials.com/c-programming/programs/delete-array-element
https://learnetutorials.com/c-programming/programs/check-negative-positive-number
https://learnetutorials.com/c-programming/programs/string-palindrome
https://learnetutorials.com/c-programming/programs/generate-fibonacci-series
https://learnetutorials.com/c-programming/constants-literals
https://learnetutorials.com/c-programming/decision-making-statements
http://www.facebook.com/sharer.php?u=https://learnetutorials.com/c-programming/operators
http://twitter.com/share?url=https://learnetutorials.com/c-programming/operators&text=Simple%20Share%20Buttons&hashtags=simplesharebuttons
https://mail.google.com/mail/?view=cm&fs=1&tf=1&body=https://learnetutorials.com/c-programming/operators
https://api.whatsapp.com//send?text=https://learnetutorials.com/c-programming/operators
https://learnetutorials.com/c-programming/constants-literals
https://learnetutorials.com/c-programming/decision-making-statements
https://learnetutorials.com/r-programming
https://learnetutorials.com/c-programming
https://learnetutorials.com/c-programming/strings
https://learnetutorials.com/c-programming/types-of-pointers
https://learnetutorials.com/c-programming/file-handling
https://learnetutorials.com/c-programming/loop-control-statements
https://learnetutorials.com/
https://learnetutorials.com/html
https://learnetutorials.com/python
https://learnetutorials.com/c-programming
https://learnetutorials.com/java
https://learnetutorials.com/machine-learning
https://learnetutorials.com/r-programming
https://learnetutorials.com/php
https://learnetutorials.com/golang
https://learnetutorials.com/artificial-intelligence
https://learnetutorials.com/html
https://learnetutorials.com/cyber-security
https://learnetutorials.com/cpp-programming
https://learnetutorials.com/data-science
https://learnetutorials.com/python
https://learnetutorials.com/c-programming
https://learnetutorials.com/java
https://learnetutorials.com/machine-learning
https://learnetutorials.com/r-programming
https://learnetutorials.com/php
https://learnetutorials.com/golang
https://learnetutorials.com/artificial-intelligence
https://learnetutorials.com/html
https://learnetutorials.com/cyber-security
https://learnetutorials.com/cpp-programming
https://learnetutorials.com/data-science
https://learnetutorials.com/python/programs
https://learnetutorials.com/c-programming/programs
https://learnetutorials.com/java/programs
https://learnetutorials.com/r-programming/programs
https://learnetutorials.com/php/programs
https://learnetutorials.com/golang/programs
https://learnetutorials.com/html/programs
https://learnetutorials.com/cpp-programming/programs
mailto:learnetutorials2021@gmail.com
https://learnetutorials.com/blog
https://learnetutorials.com/privacy-policy
https://learnetutorials.com/online-quiz
https://learnetutorials.com/online-compiler
https://learnetutorials.com/online-test
https://learnetutorials.com/interview-questions
https://learnetutorials.com/c-programming/operators
https://www.facebook.com/learnetutorials2021/
https://www.instagram.com/learn_etutorials/
https://www.linkedin.com/company/79690310
https://www.youtube.com/channel/UCP3UxEJqRZkSDGL6-3ZC84w
https://twitter.com/Learnetutorials
https://learnetutorials.com/
https://learnetutorials.com/
javascript:void(0);
javascript:void(0);
https://learnetutorials.com/blog

