
Chapter 26: Working With Files and
Directories Without Using
FileSystemObject
Section 26.1: Determining If Folders and Files Exist
Files:

To determine if a file exists, simply pass the filename to the Dir$ function and test to see if it returns a result. Note
that Dir$ supports wild-cards, so to test for a specific file, the passed pathName should to be tested to ensure that it
does not contain them. The sample below raises an error - if this isn't the desired behavior, the function can be
changed to simply return False.

Public Function FileExists(pathName As String) As Boolean
 If InStr(1, pathName, "*") Or InStr(1, pathName, "?") Then
 'Exit Function 'Return False on wild-cards.
 Err.Raise 52 'Raise error on wild-cards.
 End If
 FileExists = Dir$(pathName) <> vbNullString
End Function

Folders (Dir$ method):

The Dir$() function can also be used to determine if a folder exists by specifying passing vbDirectory for the
optional attributes parameter. In this case, the passed pathName value must end with a path separator (\), as
matching filenames will cause false positives. Keep in mind that wild-cards are only allowed after the last path
separator, so the example function below will throw a run-time error 52 - "Bad file name or number" if the input
contains a wild-card. If this isn't the desired behavior, uncomment On Error Resume Next at the top of the
function. Also remember that Dir$ supports relative file paths (i.e. ..\Foo\Bar), so results are only guaranteed to
be valid as long as the current working directory is not changed.

Public Function FolderExists(ByVal pathName As String) As Boolean
 'Uncomment the "On Error" line if paths with wild-cards should return False
 'instead of raising an error.
 'On Error Resume Next
 If pathName = vbNullString Or Right$(pathName, 1) <> "\" Then
 Exit Function
 End If
 FolderExists = Dir$(pathName, vbDirectory) <> vbNullString
End Function

Folders (ChDir method):

The ChDir statement can also be used to test if a folder exists. Note that this method will temporarily change the
environment that VBA is running in, so if that is a consideration, the Dir$ method should be used instead. It does
have the advantage of being much less forgiving with its parameter. This method also supports relative file paths,
so has the same caveat as the Dir$ method.

Public Function FolderExists(ByVal pathName As String) As Boolean
 'Cache the current working directory
 Dim cached As String
 cached = CurDir$

 On Error Resume Next

 ChDir pathName
 FolderExists = Err.Number = 0
 On Error GoTo 0
 'Change back to the cached working directory.
 ChDir cached
End Function

Section 26.2: Creating and Deleting File Folders
NOTE: For brevity, the examples below use the FolderExists function from the Determining If Folders and Files
Exist example in this topic.

The MkDir statement can be used to create a new folder. It accepts paths containing drive letters (C:\Foo), UNC
names (\\Server\Foo), relative paths (..\Foo), or the current working directory (Foo).

If the drive or UNC name is omitted (i.e. \Foo), the folder is created on the current drive. This may or may not be the
same drive as the current working directory.

Public Sub MakeNewDirectory(ByVal pathName As String)
 'MkDir will fail if the directory already exists.
 If FolderExists(pathName) Then Exit Sub
 'This may still fail due to permissions, etc.
 MkDir pathName
End Sub

The RmDir statement can be used to delete existing folders. It accepts paths in the same forms as MkDir and uses
the same relationship to the current working directory and drive. Note that the statement is similar to the Windows
rd shell command, so will throw a run-time error 75: "Path/File access error" if the target directory is not empty.

Public Sub DeleteDirectory(ByVal pathName As String)
 If Right$(pathName, 1) <> "\" Then
 pathName = pathName & "\"
 End If
 'Rmdir will fail if the directory doesn't exist.
 If Not FolderExists(pathName) Then Exit Sub
 'Rmdir will fail if the directory contains files.
 If Dir$(pathName & "*") <> vbNullString Then Exit Sub

 'Rmdir will fail if the directory contains directories.
 Dim subDir As String
 subDir = Dir$(pathName & "*", vbDirectory)
 Do
 If subDir <> "." And subDir <> ".." Then Exit Sub
 subDir = Dir$(, vbDirectory)
 Loop While subDir <> vbNullString

 'This may still fail due to permissions, etc.
 RmDir pathName
End Sub

	Chapter 26: Working With Files and Directories Without Using FileSystemObject
	Section 26.1: Determining If Folders and Files Exist

	Chapter 26: Working With Files and Directories Without Using FileSystemObject
	Section 26.2: Creating and Deleting File Folders

