
Chapter 14: Importing external libraries
Section 14.1: Finding definition files
for typescript 2.x:

definitions from DefinitelyTyped are available via @types npm package

npm i --save lodash
npm i --save-dev @types/lodash

but in case if you want use types from other repos then can be used old way:

for typescript 1.x:

Typings is an npm package that can automatically install type definition files into a local project. I recommend that
you read the quickstart.

npm install -global typings

Now we have access to the typings cli.

The first step is to search for the package used by the project1.

typings search lodash
NAME SOURCE HOMEPAGE DESCRIPTION VERSIONS
UPDATED
lodash dt http://lodash.com/ 2
 2016-07-20T00:13:09.000Z
lodash global 1
 2016-07-01T20:51:07.000Z
lodash npm https://www.npmjs.com/package/lodash 1
 2016-07-01T20:51:07.000Z

Then decide which source you should install from. I use dt which stands for DefinitelyTyped a GitHub repo2.
where the community can edit typings, it's also normally the most recently updated.

Install the typings files3.

 typings install dt~lodash --global --save

Let's break down the last command. We are installing the DefinitelyTyped version of lodash as a global typings file
in our project and saving it as a dependency in the typings.json. Now wherever we import lodash, typescript will
load the lodash typings file.

If we want to install typings that will be used for development environment only, we can supply the --save-4.
dev flag:

 typings install chai --save-dev

https://github.com/DefinitelyTyped/DefinitelyTyped
https://www.npmjs.com/%7Etypes
https://github.com/typings/typings
https://github.com/typings/typings#quick-start
https://github.com/DefinitelyTyped/DefinitelyTyped

Section 14.2: Importing a module from npm
If you have a type definition file (d.ts) for the module, you can use an import statement.

import _ = require('lodash');

If you don't have a definition file for the module, TypeScript will throw an error on compilation because it cannot
find the module you are trying to import.

In this case, you can import the module with the normal runtime require function. This returns it as the any type,
however.

// The _ variable is of type any, so TypeScript will not perform any type checking.
const _: any = require('lodash');

As of TypeScript 2.0, you can also use a shorthand ambient module declaration in order to tell TypeScript that a
module exists when you don't have a type definition file for the module. TypeScript won't be able to provide any
meaningful typechecking in this case though.

declare module "lodash";

// you can now import from lodash in any way you wish:
import { flatten } from "lodash";
import * as _ from "lodash";

As of TypeScript 2.1, the rules have been relaxed even further. Now, as long as a module exists in your
node_modules directory, TypeScript will allow you to import it, even with no module declaration anywhere. (Note
that if using the --noImplicitAny compiler option, the below will still generate a warning.)

// Will work if `node_modules/someModule/index.js` exists, or if
`node_modules/someModule/package.json` has a valid "main" entry point
import { foo } from "someModule";

Section 14.3: Using global external libraries without typings
Although modules are ideal, if the library you are using is referenced by a global variable (like $ or _), because it was
loaded by a script tag, you can create an ambient declaration in order to refer to it:

declare const _: any;

Section 14.4: Finding definition files with TypeScript 2.x
With the 2.x versions of TypeScript, typings are now available from the npm @types repository. These are
automatically resolved by the TypeScript compiler and are much simpler to use.

To install a type definition you simply install it as a dev dependency in your projects package.json

e.g.

npm i -S lodash
npm i -D @types/lodash

after install you simply use the module as before

https://www.npmjs.com/%7Etypes

import * as _ from 'lodash'

	Chapter 14: Importing external libraries
	Section 14.1: Finding deﬁnition ﬁles

	Chapter 14: Importing external libraries
	Section 14.2: Importing a module from npm
	Section 14.3: Using global external libraries without typings
	Section 14.4: Finding deﬁnition ﬁles with TypeScript 2.x

