
Chapter 12: User-defined Type Guards
Section 12.1: Type guarding functions
You can declare functions that serve as type guards using any logic you'd like.

They take the form:

function functionName(variableName: any): variableName is DesiredType {
 // body that returns boolean
}

If the function returns true, TypeScript will narrow the type to DesiredType in any block guarded by a call to the
function.

For example (try it):

function isString(test: any): test is string {
 return typeof test === "string";
}

function example(foo: any) {
 if (isString(foo)) {
 // foo is type as a string in this block
 console.log("it's a string: " + foo);
 } else {
 // foo is type any in this block
 console.log("don't know what this is! [" + foo + "]");
 }
}

example("hello world"); // prints "it's a string: hello world"
example({ something: "else" }); // prints "don't know what this is! [[object Object]]"

A guard's function type predicate (the foo is Bar in the function return type position) is used at compile time to
narrow types, the function body is used at runtime. The type predicate and function must agree, or your code won't
work.

Type guard functions don't have to use typeof or instanceof, they can use more complicated logic.

For example, this code determines if you've got a jQuery object by checking for its version string.

function isJQuery(foo): foo is JQuery {
 // test for jQuery's version string
 return foo.jquery !== undefined;
}

function example(foo) {
 if (isJQuery(foo)) {
 // foo is typed JQuery here
 foo.eq(0);
 }
}

https://goo.gl/xV4pLK

Section 12.2: Using instanceof
instanceof requires that the variable is of type any.

This code (try it):

class Pet { }
class Dog extends Pet {
 bark() {
 console.log("woof");
 }
}
class Cat extends Pet {
 purr() {
 console.log("meow");
 }
}

function example(foo: any) {
 if (foo instanceof Dog) {
 // foo is type Dog in this block
 foo.bark();
 }

 if (foo instanceof Cat) {
 // foo is type Cat in this block
 foo.purr();
 }
}

example(new Dog());
example(new Cat());

prints

woof
meow

to the console.

Section 12.3: Using typeof
typeof is used when you need to distinguish between types number, string, boolean, and symbol. Other string
constants will not error, but won't be used to narrow types either.

Unlike instanceof, typeof will work with a variable of any type. In the example below, foo could be typed as number
| string without issue.

This code (try it):

function example(foo: any) {
 if (typeof foo === "number") {
 // foo is type number in this block
 console.log(foo + 100);
 }

 if (typeof foo === "string") {

https://goo.gl/p7Ywos
https://goo.gl/a9zg07

 // foo is type string in this block
 console.log("not a number: " + foo);
 }
}

example(23);
example("foo");

prints

123
not a number: foo

	Chapter 12: User-deﬁned Type Guards
	Section 12.1: Type guarding functions

	Chapter 12: User-deﬁned Type Guards
	Section 12.2: Using instanceof
	Section 12.3: Using typeof

