
Chapter 5: Declaring Variables
Section 5.1: Type Hints
Type Hints are heavily discouraged. They exist and are documented here for historical and backward-compatibility
reasons. You should use the As [DataType] syntax instead.

Public Sub ExampleDeclaration()

 Dim someInteger% '% Equivalent to "As Integer"
 Dim someLong& '& Equivalent to "As Long"
 Dim someDecimal@ '@ Equivalent to "As Currency"
 Dim someSingle! '! Equivalent to "As Single"
 Dim someDouble# '# Equivalent to "As Double"
 Dim someString$ '$ Equivalent to "As String"

 Dim someLongLong^ '^ Equivalent to "As LongLong" in 64-bit VBA hosts
End Sub

Type hints significantly decrease code readability and encourage a legacy Hungarian Notation which also hinders
readability:

Dim strFile$
Dim iFile%

Instead, declare variables closer to their usage and name things for what they're used, not after their type:

Dim path As String
Dim handle As Integer

Type hints can also be used on literals, to enforce a specific type. By default, a numeric literal smaller than 32,768
will be interpreted as an Integer literal, but with a type hint you can control that:

Dim foo 'implicit Variant
foo = 42& ' foo is now a Long
foo = 42# ' foo is now a Double
Debug.Print TypeName(42!) ' prints "Single"

Type hints are usually not needed on literals, because they would be assigned to a variable declared with an explicit
type, or implicitly converted to the appropriate type when passed as parameters. Implicit conversions can be
avoided using one of the explicit type conversion functions:

'Calls procedure DoSomething and passes a literal 42 as a Long using a type hint
DoSomething 42&

'Calls procedure DoSomething and passes a literal 42 explicitly converted to a Long
DoSomething CLng(42)

String-returning built-in functions

The majority of the built-in functions that handle strings come in two versions: A loosely typed version that returns
a Variant, and a strongly typed version (ending with $) that returns a String. Unless you are assigning the return
value to a Variant, you should prefer the version that returns a String - otherwise there is an implicit conversion of
the return value.

https://en.wikipedia.org/wiki/Hungarian_notation

Debug.Print Left(foo, 2) 'Left returns a Variant
Debug.Print Left$(foo, 2) 'Left$ returns a String

These functions are:

VBA.Conversion.Error -> VBA.Conversion.Error$
VBA.Conversion.Hex -> VBA.Conversion.Hex$
VBA.Conversion.Oct -> VBA.Conversion.Oct$
VBA.Conversion.Str -> VBA.Conversion.Str$
VBA.FileSystem.CurDir -> VBA.FileSystem.CurDir$
VBA.[_HiddenModule].Input -> VBA.[_HiddenModule].Input$
VBA.[_HiddenModule].InputB -> VBA.[_HiddenModule].InputB$
VBA.Interaction.Command -> VBA.Interaction.Command$
VBA.Interaction.Environ -> VBA.Interaction.Environ$
VBA.Strings.Chr -> VBA.Strings.Chr$
VBA.Strings.ChrB -> VBA.Strings.ChrB$
VBA.Strings.ChrW -> VBA.Strings.ChrW$
VBA.Strings.Format -> VBA.Strings.Format$
VBA.Strings.LCase -> VBA.Strings.LCase$
VBA.Strings.Left -> VBA.Strings.Left$
VBA.Strings.LeftB -> VBA.Strings.LeftB$
VBA.Strings.LTtrim -> VBA.Strings.LTrim$
VBA.Strings.Mid -> VBA.Strings.Mid$
VBA.Strings.MidB -> VBA.Strings.MidB$
VBA.Strings.Right -> VBA.Strings.Right$
VBA.Strings.RightB -> VBA.Strings.RightB$
VBA.Strings.RTrim -> VBA.Strings.RTrim$
VBA.Strings.Space -> VBA.Strings.Space$
VBA.Strings.Str -> VBA.Strings.Str$
VBA.Strings.String -> VBA.Strings.String$
VBA.Strings.Trim -> VBA.Strings.Trim$
VBA.Strings.UCase -> VBA.Strings.UCase$

Note that these are function aliases, not quite type hints. The Left function corresponds to the hidden B_Var_Left
function, while the Left$ version corresponds to the hidden B_Str_Left function.

In very early versions of VBA the $ sign isn't an allowed character and the function name had to be enclosed in
square brackets. In Word Basic, there were many, many more functions that returned strings that ended in $.

Section 5.2: Variables
Scope

A variable can be declared (in increasing visibility level):

At procedure level, using the Dim keyword in any procedure; a local variable.
At module level, using the Private keyword in any type of module; a private field.
At instance level, using the Friend keyword in any type of class module; a friend field.
At instance level, using the Public keyword in any type of class module; a public field.
Globally, using the Public keyword in a standard module; a global variable.

Variables should always be declared with the smallest possible scope: prefer passing parameters to procedures,
rather than declaring global variables.

See Access Modifiers for more information.

Local variables

Use the Dim keyword to declare a local variable:

Dim identifierName [As Type][, identifierName [As Type], ...]

The [As Type] part of the declaration syntax is optional. When specified, it sets the variable's data type, which
determines how much memory will be allocated to that variable. This declares a String variable:

Dim identifierName As String

When a type is not specified, the type is implicitly Variant:

Dim identifierName 'As Variant is implicit

The VBA syntax also supports declaring multiple variables in a single statement:

Dim someString As String, someVariant, someValue As Long

Notice that the [As Type] has to be specified for each variable (other than 'Variant' ones). This is a relatively
common trap:

Dim integer1, integer2, integer3 As Integer 'Only integer3 is an Integer.
 'The rest are Variant.

Static variables

Local variables can also be Static. In VBA the Static keyword is used to make a variable "remember" the value it
had, last time a procedure was called:

Private Sub DoSomething()
 Static values As Collection
 If values Is Nothing Then
 Set values = New Collection
 values.Add "foo"
 values.Add "bar"
 End If
 DoSomethingElse values
End Sub

Here the values collection is declared as a Static local; because it's an object variable, it is initialized to Nothing.
The condition that follows the declaration verifies if the object reference was Set before - if it's the first time the
procedure runs, the collection gets initialized. DoSomethingElse might be adding or removing items, and they'll still
be in the collection next time DoSomething is called.

Alternative

VBA's Static keyword can easily be misunderstood - especially by seasoned programmers that usually
work in other languages. In many languages, static is used to make a class member (field, property,
method, ...) belong to the type rather than to the instance. Code in static context cannot reference code
in instance context. The VBA Static keyword means something wildly different.

Often, a Static local could just as well be implemented as a Private, module-level variable (field) - however this
challenges the principle by which a variable should be declared with the smallest possible scope; trust your
instincts, use whichever you prefer - both will work... but using Static without understanding what it does could
lead to interesting bugs.

Dim vs. Private

The Dim keyword is legal at procedure and module levels; its usage at module level is equivalent to using the
Private keyword:

Option Explicit
Dim privateField1 As Long 'same as Private privateField2 as Long
Private privateField2 As Long 'same as Dim privateField2 as Long

The Private keyword is only legal at module level; this invites reserving Dim for local variables and declaring
module variables with Private, especially with the contrasting Public keyword that would have to be used anyway
to declare a public member. Alternatively use Dim everywhere - what matters is consistency:

"Private fields"

DO use Private to declare a module-level variable.
DO use Dim to declare a local variable.
DO NOT use Dim to declare a module-level variable.

"Dim everywhere"

DO use Dim to declare anything private/local.
DO NOT use Private to declare a module-level variable.
AVOID declaring Public fields.*

*In general, one should avoid declaring Public or Global fields anyway.

Fields

A variable declared at module level, in the declarations section at the top of the module body, is a field. A Public field
declared in a standard module is a global variable:

Public PublicField As Long

A variable with a global scope can be accessed from anywhere, including other VBA projects that would reference
the project it's declared in.

To make a variable global/public, but only visible from within the project, use the Friend modifier:

Friend FriendField As Long

This is especially useful in add-ins, where the intent is that other VBA projects reference the add-in project and can
consume the public API.

Friend FriendField As Long 'public within the project, aka for "friend" code
Public PublicField As Long 'public within and beyond the project

Friend fields are not available in standard modules.

Instance Fields

A variable declared at module level, in the declarations section at the top of the body of a class module (including
ThisWorkbook, ThisDocument, Worksheet, UserForm and class modules), is an instance field: it only exists as long as
there's an instance of the class around.

'> Class1
Option Explicit
Public PublicField As Long

'> Module1
Option Explicit
Public Sub DoSomething()
 'Class1.PublicField means nothing here
 With New Class1
 .PublicField = 42
 End With
 'Class1.PublicField means nothing here
End Sub

Encapsulating fields

Instance data is often kept Private, and dubbed encapsulated. A private field can be exposed using a Property
procedure. To expose a private variable publicly without giving write access to the caller, a class module (or a
standard module) implements a Property Get member:

Option Explicit
Private encapsulated As Long

Public Property Get SomeValue() As Long
 SomeValue = encapsulated
End Property

Public Sub DoSomething()
 encapsulated = 42
End Sub

The class itself can modify the encapsulated value, but the calling code can only access the Public members (and
Friend members, if the caller is in the same project).

To allow the caller to modify:

An encapsulated value, a module exposes a Property Let member.
An encapsulated object reference, a module exposes a Property Set member.

Section 5.3: Constants (Const)
If you have a value that never changes in your application, you can define a named constant and use it in place of a
literal value.

You can use Const only at module or procedure level. This means the declaration context for a variable must be a
class, structure, module, procedure, or block, and cannot be a source file, namespace, or interface.

Public Const GLOBAL_CONSTANT As String = "Project Version #1.000.000.001"
Private Const MODULE_CONSTANT As String = "Something relevant to this Module"

Public Sub ExampleDeclaration()

 Const SOME_CONSTANT As String = "Hello World"

 Const PI As Double = 3.141592653

End Sub

Whilst it can be considered good practice to specify Constant types, it isn't strictly required. Not specifying the type
will still result in the correct type:

Public Const GLOBAL_CONSTANT = "Project Version #1.000.000.001" 'Still a string
Public Sub ExampleDeclaration()

 Const SOME_CONSTANT = "Hello World" 'Still a string
 Const DERIVED_CONSTANT = SOME_CONSTANT 'DERIVED_CONSTANT is also a string
 Const VAR_CONSTANT As Variant = SOME_CONSTANT 'VAR_CONSTANT is Variant/String

 Const PI = 3.141592653 'Still a double
 Const DERIVED_PI = PI 'DERIVED_PI is also a double
 Const VAR_PI As Variant = PI 'VAR_PI is Variant/Double

End Sub

Note that this is specific to Constants and in contrast to variables where not specifying the type results in a Variant
type.

While it is possible to explicitly declare a constant as a String, it is not possible to declare a constant as a string using
fixed-width string syntax

'This is a valid 5 character string constant
Const FOO As String = "ABCDE"

'This is not valid syntax for a 5 character string constant
Const FOO As String * 5 = "ABCDE"

Section 5.4: Declaring Fixed-Length Strings
In VBA, Strings can be declared with a specific length; they are automatically padded or truncated to maintain that
length as declared.

Public Sub TwoTypesOfStrings()

 Dim FixedLengthString As String * 5 ' declares a string of 5 characters
 Dim NormalString As String

 Debug.Print FixedLengthString ' Prints " "
 Debug.Print NormalString ' Prints ""

 FixedLengthString = "123" ' FixedLengthString now equals "123 "
 NormalString = "456" ' NormalString now equals "456"

 FixedLengthString = "123456" ' FixedLengthString now equals "12345"
 NormalString = "456789" ' NormalString now equals "456789"

End Sub

Section 5.5: When to use a Static variable
A Static variable declared locally is not destructed and does not lose its value when the Sub procedure is exited.
Subsequent calls to the procedure do not require re-initialization or assignment although you may want to 'zero'
any remembered value(s).

These are particularly useful when late binding an object in a 'helper' sub that is called repeatedly.

Snippet 1: Reuse a Scripting.Dictionary object across many worksheets

Option Explicit

Sub main()
 Dim w As Long

 For w = 1 To Worksheets.Count
 processDictionary ws:=Worksheets(w)
 Next w
End Sub

Sub processDictionary(ws As Worksheet)
 Dim i As Long, rng As Range
 Static dict As Object

 If dict Is Nothing Then
 'initialize and set the dictionary object
 Set dict = CreateObject("Scripting.Dictionary")
 dict.CompareMode = vbTextCompare
 Else
 'remove all pre-existing dictionary entries
 ' this may or may not be desired if a single dictionary of entries
 ' from all worksheets is preferred
 dict.RemoveAll
 End If

 With ws

 'work with a fresh dictionary object for each worksheet
 ' without constructing/destructing a new object each time
 ' or do not clear the dictionary upon subsequent uses and
 ' build a dictionary containing entries from all worksheets

 End With
End Sub

Snippet 2: Create a worksheet UDF that late binds the VBScript.RegExp object

Option Explicit

Function numbersOnly(str As String, _
 Optional delim As String = ", ")
 Dim n As Long, nums() As Variant
 Static rgx As Object, cmat As Object

 'with rgx as static, it only has to be created once
 'this is beneficial when filling a long column with this UDF
 If rgx Is Nothing Then
 Set rgx = CreateObject("VBScript.RegExp")
 Else
 Set cmat = Nothing

 End If

 With rgx
 .Global = True
 .MultiLine = True
 .Pattern = "[0-9]{1,999}"
 If .Test(str) Then
 Set cmat = .Execute(str)
 'resize the nums array to accept the matches
 ReDim nums(cmat.Count - 1)
 'populate the nums array with the matches
 For n = LBound(nums) To UBound(nums)
 nums(n) = cmat.Item(n)
 Next n
 'convert the nums array to a delimited string
 numbersOnly = Join(nums, delim)
 Else
 numbersOnly = vbNullString
 End If
 End With
End Function

 Example of UDF with Static object filled through a half-million rows

*Elapsed times to fill 500K rows with UDF:
 - with Dim rgx As Object: 148.74 seconds
 - with Static rgx As Object: 26.07 seconds

* These should be considered for relative comparison only. Your own results will vary according to the
complexity and
 scope of the operations performed.

Remember that a UDF is not calculated once in the lifetime of a workbook. Even a non-volatile UDF will recalculate
whenever the values within the range(s) it references are subject to change. Each subsequent recalculation event
only increases the benefits of a statically declared variable.

A Static variable is available for the lifetime of the module, not the procedure or function in which it was
declared and assigned.
Static variables can only be declared locally.
Static variable hold many of the same properties of a private module level variable but with a more restricted
scope.

Related reference: Static (Visual Basic)

http://i.stack.imgur.com/BN6gX.png
https://msdn.microsoft.com/en-us/library/z2cty7t8.aspx

Section 5.6: Implicit And Explicit Declaration
If a code module does not contain Option Explicit at the top of the module, then the compiler will automatically
(that is, "implicitly") create variables for you when you use them. They will default to variable type Variant.

Public Sub ExampleDeclaration()

 someVariable = 10 '
 someOtherVariable = "Hello World"
 'Both of these variables are of the Variant type.

End Sub

In the above code, if Option Explicit is specified, the code will interrupt because it is missing the required Dim
statements for someVariable and someOtherVariable.

Option Explicit

Public Sub ExampleDeclaration()

 Dim someVariable As Long
 someVariable = 10

 Dim someOtherVariable As String
 someOtherVariable = "Hello World"

End Sub

It is considered best practice to use Option Explicit in code modules, to ensure that you declare all variables.

See VBA Best Practices how to set this option by default.

Section 5.7: Access Modifiers
The Dim statement should be reserved for local variables. At module-level, prefer explicit access modifiers:

Private for private fields, which can only be accessed within the module they're declared in.
Public for public fields and global variables, which can be accessed by any calling code.
Friend for variables public within the project, but inaccessible to other referencing VBA projects (relevant for
add-ins)
Global can also be used for Public fields in standard modules, but is illegal in class modules and is obsolete
anyway - prefer the Public modifier instead. This modifier isn't legal for procedures either.

Access modifiers are applicable to variables and procedures alike.

Private ModuleVariable As String
Public GlobalVariable As String

Private Sub ModuleProcedure()

 ModuleVariable = "This can only be done from within the same Module"

End Sub

Public Sub GlobalProcedure()

 GlobalVariable = "This can be done from any Module within this Project"

End Sub

Option Private Module

Public parameterless Sub procedures in standard modules are exposed as macros and can be attached to controls
and keyboard shortcuts in the host document.

Conversely, public Function procedures in standard modules are exposed as user-defined functions (UDF's) in the
host application.

Specifying Option Private Module at the top of a standard module prevents its members from being exposed as
macros and UDF's to the host application.

	Chapter 5: Declaring Variables
	Section 5.1: Type Hints

	Chapter 5: Declaring Variables
	Section 5.2: Variables

	Chapter 5: Declaring Variables
	Section 5.3: Constants (Const)

	Chapter 5: Declaring Variables
	Section 5.4: Declaring Fixed-Length Strings

	Chapter 5: Declaring Variables
	Section 5.5: When to use a Static variable

	Chapter 5: Declaring Variables
	Section 5.6: Implicit And Explicit Declaration
	Section 5.7: Access Modiﬁers

