
Chapter 8: Array

Dim array(9) As Integer ' Defines an array variable with 10 Integer elements (0-9).

Dim array = New Integer(10) {} ' Defines an array variable with 11 Integer elements (0-10)
 'using New.

Dim array As Integer() = {1, 2, 3, 4} ' Defines an Integer array variable and populate it
 'using an array literal. Populates the array with
 '4 elements.

ReDim Preserve array(10) ' Redefines the size of an existing array variable preserving any
 'existing values in the array. The array will now have 11 Integer
 'elements (0-10).

ReDim array(10) ' Redefines the size of an existing array variable discarding any
 'existing values in the array. The array will now have 11 Integer
 'elements (0-10).

Zero-Based

All arrays in VB.NET are zero-based. In other words, the index of the first item (the lower bound) in a VB.NET array is
always 0. Older versions of VB, such as VB6 and VBA, were one-based by default, but they provided a way to
override the default bounds. In those earlier versions of VB, the lower and upper bounds could be explicitly stated
(e.g. Dim array(5 To 10). In VB.NET, in order to maintain compatibility with other .NET languages, that flexibility
was removed and the lower bound of 0 is now always enforced. However, the To syntax can still be used in VB.NET,
which may make the range more explicitly clear. For instance, the following examples are all equivalent to the ones
listed above:

Dim array(0 To 9) As Integer

Dim array = New Integer(0 To 10) {}

ReDim Preserve array(0 To 10)

ReDim array(0 To 10)

Nested Array Declarations

Dim myArray = {{1, 2}, {3, 4}}

Section 8.2: Null Array Variables
Since arrays are reference types, an array variable can be null. To declare a null array variable, you must declare it
without a size:

Dim array() As Integer

Or

Dim array As Integer()

Section 8.1: Array definition

To check if an array is null, test to see if it Is Nothing:

Dim array() As Integer
If array Is Nothing Then
 array = {1, 2, 3}
End If

To set an existing array variable to null, simply set it to Nothing:

Dim array() As Integer = {1, 2, 3}
array = Nothing
Console.WriteLine(array(0)) ' Throws a NullReferenceException

Or use Erase, which does the same thing:

Dim array() As Integer = {1, 2, 3}
Erase array
Console.WriteLine(array(0)) ' Throws a NullReferenceException

Section 8.3: Array initialization
Dim array() As Integer = {2, 0, 1, 6} ''Initialize an array of four Integers.
Dim strings() As String = {"this", "is", "an", "array"} ''Initialize an array of four Strings.
Dim floats() As Single = {56.2, 55.633, 1.2, 5.7743, 22.345}
 ''Initialize an array of five Singles, which are the same as floats in C#.
Dim miscellaneous() as Object = { New Object(), "Hello", New List(of String) }
 ''Initialize an array of three references to any reference type objects
 ''and point them to objects of three different types.

Section 8.4: Declare a single-dimension array and set array
element values
Dim array = New Integer() {1, 2, 3, 4}

or

Dim array As Int32() = {1, 2, 3, 4}

Section 8.5: Jagged Array Initialization
Note the parenthesis to distinguish between a jagged array and a multidimensional array SubArrays can be of
different length

Dim jaggedArray()() As Integer = { ({1, 2, 3}), ({4, 5, 6}), ({7}) }
' jaggedArray(0) is {1, 2, 3} and so jaggedArray(0)(0) is 1
' jaggedArray(1) is {4, 5, 6} and so jaggedArray(1)(0) is 4
' jaggedArray(2) is {7} and so jaggedArray(2)(0) is 7

Section 8.6: Non-zero lower bounds
With Option Strict On, although the .NET Framework allows the creation of single dimension arrays with non-zero
lower bounds they are not "vectors" and so not compatible with VB.NET typed arrays. This means they can only be
seen as Array and so cannot use normal array (index) references.

Dim a As Array = Array.CreateInstance(GetType(Integer), {4}, {-1})
For y = LBound(a) To UBound(a)
 a.SetValue(y * y, y)
Next
For y = LBound(a) To UBound(a)
 Console.WriteLine($"{y}: {a.GetValue(y)}")
Next

As well as by using Option Strict Off, you can get the (index) syntax back by treating the array as an IList, but
then it's not an array, so you can't use LBound and UBound on that variable name (and you're still not avoiding
boxing):

Dim nsz As IList = a
For y = LBound(a) To UBound(a)
 nsz(y) = 2 - CInt(nsz(y))
Next
For y = LBound(a) To UBound(a)
 Console.WriteLine($"{y}: {nsz(y)}")
Next

Multi-dimensional non-zero lower bounded arrays are compatible with VB.NET multi-dimensional typed arrays:

Dim nza(,) As Integer = DirectCast(Array.CreateInstance(GetType(Integer),
 {4, 3}, {1, -1}), Integer(,))
For y = LBound(nza) To UBound(nza)
 For w = LBound(nza, 2) To UBound(nza, 2)
 nza(y, w) = -y * w + nza(UBound(nza) - y + LBound(nza),
 UBound(nza, 2) - w + LBound(nza, 2))
 Next
Next
For y = LBound(nza) To UBound(nza)
 Dim ly = y
 Console.WriteLine(String.Join(" ",
 Enumerable.Repeat(ly & ":", 1).Concat(
 Enumerable.Range(LBound(nza, 2), UBound(nza, 2) - LBound(nza, 2) + 1) _
 .Select(Function(w) CStr(nza(ly, w))))))
Next

MSDN reference: Array.CreateInstance

Section 8.7: Referencing Same Array from Two Variables
Since arrays are reference types, it is possible to have multiple variables pointing to the same array object.

Dim array1() As Integer = {1, 2, 3}
Dim array2() As Integer = array1
array1(0) = 4
Console.WriteLine(String.Join(", ", array2)) ' Writes "4, 2, 3"

Section 8.8: Multidimensional Array initialization
Dim array2D(,) As Integer = {{1, 2, 3}, {4, 5, 6}}
' array2D(0, 0) is 1 ; array2D(0, 1) is 2 ; array2D(1, 0) is 4

Dim array3D(,,) As Integer = {{{1, 2, 3}, {4, 5, 6}}, {{7, 8, 9}, {10, 11, 12}}}
' array3D(0, 0, 0) is 1 ; array3D(0, 0, 1) is 2
' array3D(0, 1, 0) is 4 ; array3D(1, 0, 0) is 7

https://msdn.microsoft.com/en-us/library/x836773a.aspx

	Chapter 8: Array
	Section 8.1: Array deﬁnition
	Section 8.2: Null Array Variables

	Chapter 8: Array
	Section 8.3: Array initialization
	Section 8.4: Declare a single-dimension array and set array element values
	Section 8.5: Jagged Array Initialization
	Section 8.6: Non-zero lower bounds

	Chapter 8: Array
	Section 8.7: Referencing Same Array from Two Variables
	Section 8.8: Multidimensional Array initialization

