Helping With Math

Illustrating Equivalent Fractions Using Fraction Models

Equivalent fractions are fractions with different numbers representing the same part of a whole. They have different numerators and denominators, but their fractional values are the same.

FRACTION MODELS

Take these portions of pizza for example. By looking at their fraction models, you can see that they are actually equivalent to each other.

In constructing fraction models, follow these simple steps:

1. Draw a shape that best represents what you are trying to model.
2. Split the shape into equal parts. The total number of portions is determined by the denominator.
3. Shade the portions indicated by the numerator.

Fraction models also work for improper fractions or mixed numbers!

Fraction models help us visualize fraction numbers.

This makes problem solving easier!

BASIC OPERATIONS

In adding or subtracting fractions with similar denominator, just add the numerators and retain the denominator.

$\frac{3}{8}$

1
$+$
8

4
8

But for two fractions with different denominators, get their equivalent fractions first so that they will have the same denominators. Then proceed to the usual addition/subtraction of fractions.

To multiply fractions, just multiply the numerators with each other. Do the same for the denominators. By using the fraction models, overlap the two models and the intersection would be the product.

1
x
6

4
$=$
6

TABLE OF ACTIVITIES

1. Pour the OJ
2. Dozen of cupcakes
3. Pizza Party
4. Slice It!
5. Sandwich Portions I
6. Sandwich Portions II
7. Pie Eating Contest
8. Match It!
9. Chandler's Lemonade
10. Phoebe's Cake

POUR THE OJ

Write in the blanks the fraction indicated by the fraction models. Pour the juice up to the level of the corresponding equivalent fraction. Do this by coloring the glasses.

\square

A very warm day! A quenching orange juice would be perfect!

DOZEN OF CUPCAKES

Color the cupcakes below to represent the given fractions through fraction models.

$\frac{8}{12}$

2
4

2
3

5
6

PIZZA PARTY

In the left side of the equation, write the fraction indicated by the colored portion of pizza. Then provide and illustrate an equivalent fraction for each in the right hand side.

PIZZA SLICER

Illustrate the following in fraction models, then compare. Determine whether greater than ($>$), less than ($(<)$, or equal(=)

5
6

2

6

PIE EATING CONTEST

Answer the following questions. Note that the fraction models represent the pie left from each of their whole pie after eating.

Monica

Joey

Rachel

6. Who ate the second least amount of pie?
Determine who is being described.
5. Who ate the most pie?
\qquad

SANDWICH PORTIONS I

Identify the fractions represented by the fraction models, then proceed to addition. Don't forget to model the sum too.

2.a \qquad 2.b \qquad 2.c \qquad

3.a \qquad 3.b \qquad $3 . c$ \qquad

SANDWICH PORTIONS II

Identify the fractions represented by the fraction models, then proceed to subtraction. Don't forget to model the difference too.

1.b \qquad 1.c \qquad

2.b \qquad 2.c \qquad

3.b \qquad 3.c \qquad

Match it!

Match the expressions to their corresponding fraction models

Equivalent Fractions

CHANDLER'S LEMONADE

Chandler would tike to make lemonade to share among his friends. One serving of lemonade requires 1/2 cup water, 1/3 cup syrup, and $4 / 6$ cup of fresh lemon juice. Help Chandler by solving the problem. Please illustrate by using fraction models.

1. How much water does Chandler need in order to make 4 servings of lemonade?
2. How much lemon juice does Chandler need in order to make 3 servings of lemonade?
3. How much syrup does Chandler need in order to make 4 servings of lemonade?

PHOEBE'S CAKE

Phoebe bought a cake to share with Mike. They split it in half in which both of them get equal parts. Answer the problem by multiplication using fraction models.

1. Phoebe was able to finish $2 / 3$ of her share. How much portion of the cake did Phoebe eat?
\square
2. Mike was only able to finish $1 / 4$ of his share. How much portion of the cake did Mike eat?
\square
3. In total, how much portion of the cake did Phoebe and Mike eat?

ANSWER GUIDE

Activity 1

1.a. $1 / 2$	1.b. $2 / 4$	1.			
2.a. $1 / 3$	2.b. $2 / 6$				

Activity 2

1.

2

3.

4.

Activity 3

1.a $3 / 4$
1.b 6/8
2.a $1 / 2$
2.b $3 / 6$
3.a $2 / 3$
3.b $4 / 6$
1.

2.

Activity 4

ANSWER GUIDE

Activity 5

1.	$1 / 4$	4. $1 / 2$
2.	$1 / 6$	5. Rachel
3.	$1 / 3$	6. Monica

Activity 6

1.a. $1 / 2$
1.b. $1 / 4$

1.c. $3 / 4$$\square$\begin{tabular}{l}
2.a. $1 / 2$

2.b. $1 / 3$

2.c. $5 / 6$

\square

3.a. $1 / 6$

3.b. $2 / 3$

3.c. $5 / 6$
\end{tabular}$\square \square$

Activity 7

1.a. 1
1.b. $1 / 3$

1.c. $2 / 3$$\square$\begin{tabular}{l}
2.a. $3 / 4$

2.b. $1 / 2$

2.c. $1 / 4$

$\quad \square \square$

3.a. $5 / 6$

3.b. $2 / 3$

3.c. $1 / 6$
\end{tabular}$\square \square$

Activity 8

1. A ----- H
2. B ----- J
3. D ----- F
4. E ----- G
5. $\mathrm{C}----\mathrm{I}$

ANSWER GUIDE

Activity 9

1. $4 \times 1 / 2=4 / 2=2$

2. $3 \times 4 / 6=12 / 6=2$

3. $4 \times 1 / 3=4 / 3=1 \frac{1}{3}$

Activity 10

1. $1 / 2 \times 2 / 3=2 / 6$
\square

2. $1 / 2 \times 1 / 3=1 / 6$
\square

3. $2 / 6+1 / 6=3 / 6=1 / 2$

COPYRIGHT NOTICE

> This resource is licensed under the Creative Commons Attribution-NonCommercial 4.0 International license.

You are free to:

- Share - copy and redistribute the material in any medium or format
- Adapt - remix, transform, and build upon the material Under the following terms:
- Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial - You may not use the material for commercial purposes.

For more information on this license, visit the following link:

http://creativecommons.org/licenses/by-nc/4.0/

Where possible, free-use images are sourced from online repositories such as Wikipedia and Wikimedia Commons. References and sources for images are provided in the speaker notes section of this document.

Thank you!

THANK YOU

Thank you so much for purchasing and downloading this resource.

We hope it has been useful for you in the classroom and that your students enjoy the activities.

For more teaching and homeschooling resources like this, don't forget to come back and download the new material we add every week!

Thanks for supporting Helping With Math. We can provide teachers with low-cost, high-quality teaching and homeschooling resources because of our loyal subscribers and hope to serve you for many years to come.

- The Entire Helping With Math Team :)

