For more projects visit: https://setscholars.net
# Suppress warnings in Jupyter Notebooks
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
import numpy as np
import pandas as pd
import tensorflow as tf
import autokeras as ak
print(ak.__version__)
import logging
tf.get_logger().setLevel(logging.ERROR)
1.0.16
In this notebook, we will learn how to build a Classification Model in Python using AutoKeras package.
TRAIN_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/train.csv"
TEST_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/eval.csv"
train_file_path = tf.keras.utils.get_file("train.csv", TRAIN_DATA_URL)
test_file_path = tf.keras.utils.get_file("eval.csv", TEST_DATA_URL)
# x_train as pandas.DataFrame, y_train as pandas.Series
x_train = pd.read_csv(train_file_path)
print(type(x_train)) # pandas.DataFrame
y_train = x_train.pop("survived")
print(type(y_train)) # pandas.Series
# You can also use pandas.DataFrame for y_train.
y_train = pd.DataFrame(y_train)
print(type(y_train)) # pandas.DataFrame
# Preparing testing data.
x_test = pd.read_csv(test_file_path)
y_test = x_test.pop("survived")
<class 'pandas.core.frame.DataFrame'> <class 'pandas.core.series.Series'> <class 'pandas.core.frame.DataFrame'>
print(); print(x_train.shape)
print(); print(x_train.head())
print(); print(y_train.shape)
print(); print(y_train.head())
(627, 9) sex age n_siblings_spouses parch fare class deck \ 0 male 22.0 1 0 7.2500 Third unknown 1 female 38.0 1 0 71.2833 First C 2 female 26.0 0 0 7.9250 Third unknown 3 female 35.0 1 0 53.1000 First C 4 male 28.0 0 0 8.4583 Third unknown embark_town alone 0 Southampton n 1 Cherbourg n 2 Southampton y 3 Southampton n 4 Queenstown y (627, 1) survived 0 0 1 1 2 1 3 1 4 0
import pandas_profiling
x_train.profile_report()