
SQL ORDER BY Clause - Learn By Example

SQL for Citizen Data
Scientists

SETScholars & WACAMLDS

https://wacamlds.podia.com/

SQL ORDER BY Clause - Learn By Example

Page 1

In general, rows in the result set returned from a query are not in any

particular order. If you want them in a particular order, you need to instruct the

DBMS to sort the result using the ORDER BY clause.

The ORDER BY clause allows you to sort one or more columns in ascending or

descending order.

Syntax
 column_name(s)

 table_name
 column | ;

SELECT
FROM
ORDER BY ASC DESC

Sample Table
To help you better understand the examples, and enable you to follow along

with the tutorial, we are going to use the following sample table.

This table is part of an ‘Employee Management System’ that contains basic

information about employees.

ID FirstName LastName Age Job Salary HireDate

5 Max Williams 26 Janitor 9000 2015-01-15

1 Bob Smith 28 Manager 60000 2011-03-07

3 Eve Jones 22 Developer 32000 2013-03-11

4 Joe Smith 24 Developer 30000 2016-10-05

6 Sam Jones 30 Janitor NULL 2012-02-10

2 Kim Johnson 26 Manager 55000 2014-04-25

SQL ORDER BY Clause - Learn By Example

Page 2

Sorting Data
If you looked at the sample table, you would have discovered that the data is

displayed in no order of any signi�cance. Actually the retrieved data is not

displayed in a mere random order. It is usually displayed in the order in which

it was initially added to the tables. However, even if you enter data in an

ordered way it can be affected if it is later updated or deleted. After all you

should not rely on the default order if you don’t explicitly control it.

So to explicitly sort the retrieved data, you can use the ORDER BY clause in your

SELECT statement.

ORDER BY takes the name of the column by which to sort the output. For

example, to sort the list of employees by ‘Age’ in ascending order, you could run

this query:

 *
 Employees

 Age ;

SELECT
FROM
ORDER BY ASC

ID FirstName LastName Age Job Salary HireDate

3 Eve Jones 22 Developer 32000 2013-03-11

4 Joe Smith 24 Developer 30000 2016-10-05

5 Max Williams 26 Janitor 9000 2015-01-15

2 Kim Johnson 26 Manager 55000 2014-04-25

1 Bob Smith 28 Manager 60000 2011-03-07

6 Sam Jones 30 Janitor NULL 2012-02-10

SQL ORDER BY Clause - Learn By Example

Page 3

Specifying ASC (or ASCENDING) allows data to be sorted in ascending order.

However, in practice, ASC is not usually used because the ascending order is the

default order.

You can use ORDER BY with data types other than numbers, such as text and

dates. The following example sorts the data alphabetically by ‘FirstName’.

 *
 Employees

 FirstName;

SELECT
FROM
ORDER BY

ID FirstName LastName Age Job Salary HireDate

1 Bob Smith 28 Manager 60000 2011-03-07

3 Eve Jones 22 Developer 32000 2013-03-11

4 Joe Smith 24 Developer 30000 2016-10-05

2 Kim Johnson 26 Manager 55000 2014-04-25

5 Max Williams 26 Janitor 9000 2015-01-15

6 Sam Jones 30 Janitor NULL 2012-02-10

The examples below sort the data by the date the employees were hired.

 *
 Employees

 HireDate;

SELECT
FROM
ORDER BY

SQL ORDER BY Clause - Learn By Example

Page 4

ID FirstName LastName Age Job Salary HireDate

1 Bob Smith 28 Manager 60000 2011-03-07

6 Sam Jones 30 Janitor NULL 2012-02-10

3 Eve Jones 22 Developer 32000 2013-03-11

2 Kim Johnson 26 Manager 55000 2014-04-25

5 Max Williams 26 Janitor 9000 2015-01-15

4 Joe Smith 24 Developer 30000 2016-10-05

When specifying an ORDER BY clause, be sure that it is the last clause in your

SELECT statement. Otherwise, an error will be generated.

 *
 Employees

 Age
 Age > ;

--raises syntax error
SELECT
FROM
ORDER BY ASC
WHERE 25

Sorting by Nonselected Columns
Columns used in the ORDER BY clause are usually selected for display, but this

is not really necessary. It is perfectly legal to sort data by a column that does

not appear in the result.

For example, following query sorts the result-set by the ‘Age’ column even if it

is not included in the SELECT list.

 FirstName, Job, Salary
 Employees

 Age;

SELECT
FROM
ORDER BY

SQL ORDER BY Clause - Learn By Example

Page 5

FirstName Job Salary

Eve Developer 32000

Joe Developer 30000

Max Janitor 9000

Kim Manager 55000

Bob Manager 60000

Sam Janitor NULL

Sorting Descending
Data sorting is not limited to ascending sort order. The ORDER BY clause can

also be used to sort data in descending order.

To sort by descending order, the keyword must be speci�ed after the

ORDER BY clause. Descending sorts are commonly used for ranking queries, for

example, the following query sorts all employees by ‘Salary’ with the highest

paid employee at the top:

DESC

 *
 Employees

 Salary ;

SELECT
FROM
ORDER BY DESC

SQL ORDER BY Clause - Learn By Example

Page 6

ID FirstName LastName Age Job Salary HireDate

1 Bob Smith 28 Manager 60000 2011-03-07

2 Kim Johnson 26 Manager 55000 2014-04-25

3 Eve Jones 22 Developer 32000 2013-03-11

4 Joe Smith 24 Developer 30000 2016-10-05

5 Max Williams 26 Janitor 9000 2015-01-15

6 Sam Jones 30 Janitor NULL 2012-02-10

Sorting Columns with NULL Values
Most DBMS orders NULL values at the beginning of the result set if the order is

ascending and orders them at the end if the order is descending.

In this example, as you can see that after sorting all the employees according to

the salary, the record of the employee whose salary is NULL came out on top.

 *
 Employees

 Salary;

SELECT
FROM
ORDER BY

SQL ORDER BY Clause - Learn By Example

Page 7

ID FirstName LastName Age Job Salary HireDate

6 Sam Jones 30 Janitor NULL 2012-02-10

5 Max Williams 26 Janitor 9000 2015-01-15

4 Joe Smith 24 Developer 30000 2016-10-05

3 Eve Jones 22 Developer 32000 2013-03-11

2 Kim Johnson 26 Manager 55000 2014-04-25

1 Bob Smith 28 Manager 60000 2011-03-07

Sorting via Expressions
You usually sort the result-set using column data, but sometimes you may need

to sort by something that is not stored in the database, and possibly does not

appear in your query. To handle such situations, you can add an expression to

your ORDER BY clause.

For example, the following query uses the built-in function to extract

the day from the column and then sorts the rows accordingly.

DAY()

HireDate

 *
 Employees

 (HireDate);

SELECT
FROM
ORDER BY DAY

SQL ORDER BY Clause - Learn By Example

Page 8

ID FirstName LastName Age Job Salary HireDate

4 Joe Smith 24 Developer 30000 2016-10-05

1 Bob Smith 28 Manager 60000 2011-03-07

6 Sam Jones 30 Janitor NULL 2012-02-10

3 Eve Jones 22 Developer 32000 2013-03-11

5 Max Williams 26 Janitor 9000 2015-01-15

2 Kim Johnson 26 Manager 55000 2014-04-25

Sorting by Column Position
Along with being able to specify sort order using column names, ORDER BY also

supports sorting columns by their position (in the SELECT clause) rather than

by name.

For example, if you want to sort using the second column (‘FirstName’ in this

case) returned by a query, you could do the following:

 ID, FirstName, Job
 Employees

 ;

SELECT
FROM
ORDER BY 2

SQL ORDER BY Clause - Learn By Example

Page 9

ID FirstName Job

1 Bob Manager

3 Eve Developer

4 Joe Developer

2 Kim Manager

5 Max Janitor

6 Sam Janitor

The main advantage of this technique is that it avoids rewriting column names.

But there are some downsides as well.

 Not explicitly listing column names increases the likelihood of incorrectly specifying

the wrong column.

 After making changes to the SELECT list, it is very easy to forget to make changes to

the ORDER BY clause.

 This technique obviously cannot be used when sorting columns that do not appear

in the SELECT list.

Sorting by Multiple Columns
There is often a need to sort data by more than one column. For example, while

displaying an employee list, you might want to sort it �rst by last-name, and

then within each last-name sort by �rst-name. This will be useful when many

employees are with the same last name.

To sort by multiple columns, simply specify the column names separated by

commas in the ORDER BY clause.

SQL ORDER BY Clause - Learn By Example

Page 10

 LastName, FirstName, Job, Age
 Employees

 LastName, FirstName;

SELECT
FROM
ORDER BY

LastName FirstName Job Age

Johnson Kim Manager 26

Jones Eve Developer 22

Jones Sam Janitor 30

Smith Bob Manager 28

Smith Joe Developer 24

Williams Max Janitor 26

Remember! The order in which the columns are speci�ed determines the sort

sequence.

Sorting Descending on Multiple Columns
If you want to sort by multiple columns in descending order, make sure that

each column has its own DESC keyword. If you don’t add the DESC keyword for

any column, that column will be sorted in ascending order by default.

Here is the same previous query that has been modi�ed to sort in descending

order.

 LastName, FirstName, Job, Age
 Employees

 LastName , FirstName ;

SELECT
FROM
ORDER BY DESC DESC

SQL ORDER BY Clause - Learn By Example

Page 11

LastName FirstName Job Age

Williams Max Janitor 26

Smith Joe Developer 24

Smith Bob Manager 28

Jones Sam Janitor 30

Jones Eve Developer 22

Johnson Kim Manager 26

