
SQL INSERT INTO Statement - Learn By
Example

SQL for Citizen Data
Scientists

SETScholars & WACAMLDS

https://wacamlds.podia.com/

SQL INSERT INTO Statement - Learn By Example

Page 1

The INSERT INTO statement allows you to insert one or more new rows into a

table. Using the INSERT INTO statement, it is possible to insert a complete row,

a partial row, multiple rows or rows generated as the result of a query.

Let’s now take a look at each of these in detail.

Sample Table
To help you better understand the examples, and enable you to follow along

with the tutorial, we are going to use the following sample table.

This table is part of an ‘Employee Management System’ that contains basic

information about employees.

ID Name Age City Job Salary

1 Bob 28 New York Manager 60000

2 Eve 24 New York Developer 32000

3 Kim 25 Chicago Manager 55000

4 Joe 23 Chicago Developer 30000

INSERT a Single Row
To use INSERT INTO you must, at a minimum, specify two pieces of information

– the table name and the values to be inserted into the new row. However,

while doing this you must provide a value for each column and also ensure that

those values are in the same order as the columns in the table de�nition.

Here’s the basic INSERT syntax.

SQL INSERT INTO Statement - Learn By Example

Page 2

 table_name
 (value1,value2, ..);

INSERT INTO
VALUES

To demonstrate, let’s insert a new employee into the ‘Employees’ table.

 Employees
(, , , , ,);

INSERT INTO
VALUES 5 'Max' 26 'New York' 'Developer' 32000

ID Name Age City Job Salary

1 Bob 28 New York Manager 60000

2 Eve 24 New York Developer 32000

3 Kim 25 Chicago Manager 55000

4 Joe 23 Chicago Developer 30000

5 Max 26 New York Developer 32000

Caution!

Although this syntax is simple, it is not safe and should generally be avoided; as

it is highly dependent on the order in which the columns are de�ned in the

table.

Even if you know the order now, there is no guarantee that the columns will be

in the same order when the table is rebuilt next time.

The safer and recommended way to use the INSERT INTO statement is to

specify the column names explicitly.

 table_name (column1,column2, …)
 (value1,value2, …);

INSERT INTO
VALUES

SQL INSERT INTO Statement - Learn By Example

Page 3

Just keep in mind that the values must be listed in the same order as the

column names. This is because when the row is inserted, the DBMS will match

each item in the column list with the appropriate value in the VALUES list. The

�rst column name matches the �rst value. The second column name matches

the second value, and so on.

The following example works exactly the same as the previous INSERT

statement, but this time the column names are explicitly speci�ed after the

table name.

 Employees (ID, Name, Age, City, Job, Salary)
(, , , , ,);

INSERT INTO
VALUES 5 'Max' 26 'New York' 'Developer' 32000

ID Name Age City Job Salary

1 Bob 28 New York Manager 60000

2 Eve 24 New York Developer 32000

3 Kim 25 Chicago Manager 55000

4 Joe 23 Chicago Developer 30000

5 Max 26 New York Developer 32000

Because the column names are explicitly speci�ed, you can place them in any

order. The following INSERT statement is the same as before, but speci�es a

column list in a different order.

 Employees (City, Name, Job, Age, Salary, ID)
(, , , , ,);

INSERT INTO
VALUES 'New York' 'Max' 'Developer' 26 32000 5

SQL INSERT INTO Statement - Learn By Example

Page 4

ID Name Age City Job Salary

1 Bob 28 New York Manager 60000

2 Eve 24 New York Developer 32000

3 Kim 25 Chicago Manager 55000

4 Joe 23 Chicago Developer 30000

5 Max 26 New York Developer 32000

It is a good idea to name all columns into which you are inserting values

because:

 Your INSERT statement becomes more descriptive.

 You can verify that you are providing the values in the proper order based on the

column names.

 You can have better data independence. The order in which the columns are de�ned

in the table doesn’t affect your INSERT statement.

 The insertion will work correctly even if the table layout changes in the future.

Inserting Partial Rows
Using the second syntax, you can omit some columns and populate the row

partially. This means that you only provide values for some columns, but not for

others. The DBMS will insert a NULL or a default value into any column for

which you do not specify a value.

To demonstrate let’s insert a new row omitting the ‘Age’ and ‘City’ columns and

their corresponding values.

 Employees (ID, Name, Job, Salary)
(, , ,);

INSERT INTO
VALUES 5 'Max' 'Janitor' 9000

SQL INSERT INTO Statement - Learn By Example

Page 5

ID Name Age City Job Salary

1 Bob 28 New York Manager 60000

2 Eve 24 New York Developer 32000

3 Kim 25 Chicago Manager 55000

4 Joe 23 Chicago Developer 30000

5 Max NULL NULL Janitor 9000

Waring!

If you plan to skip a column, then you need to make sure that one of the

following conditions exists for that column:

 The column is de�ned to allow NULL values.

 A default value for the column is speci�ed in the table de�nition.

If you omit a column that does not allow NULL values and does not have a

default value, then the INSERT statement fails and an error is generated.

INSERT Multiple Rows at once
If you have thousands of records to insert, you don’t need to execute one

INSERT at a time. You can specify multiple records in a single INSERT

statement. Simply list the values of each row inside the pair of parentheses and

separate each list from the others using a comma:

 table_name (column1,column2, ..)
 (value1,value2, ..),

 (value1,value2, ..),
 ..
 (value1,value2, ..);

INSERT INTO
VALUES

SQL INSERT INTO Statement - Learn By Example

Page 6

The following INSERT statement inserts two rows at the same time in the

‘Employees’ table.

 Employees (ID, Name, Age, City, Job, Salary)
(, , , , ,),

 (, , , , ,);

INSERT INTO
VALUES 5 'Max' 26 'New York' 'Janitor' 9000

6 'Sam' 27 'Chicago' 'Janitor' 10000

ID Name Age City Job Salary

1 Bob 28 New York Manager 60000

2 Eve 24 New York Developer 32000

3 Kim 25 Chicago Manager 55000

4 Joe 23 Chicago Developer 30000

5 Max 26 New York Janitor 9000

6 Sam 27 Chicago Janitor 10000

It is more ef�cient to do multiple inserts in this way, especially if you have

thousands of records. Otherwise, the insertion process can run very slowly.

