
SQL GROUP BY Statement - Learn By Example

SQL for Citizen Data
Scientists

SETScholars & WACAMLDS

https://wacamlds.podia.com/

SQL GROUP BY Statement - Learn By Example

Page 1

People are less interested in viewing raw data; Instead, people engaging in

data analysis often seek to manipulate raw data to �t their needs. Examples of

common data manipulations include:

1. Generating totals, such as total sales for each geographic region

2. Finding outliers, such as the top performing employee in each department

3. Determining frequencies, such as the number of products sold by each store

To answer these types of queries, you will need to divide the data into logical

sets by grouping them and then perform aggregate calculations on each group.

Such groups can be created using the clause in your SELECT

statement. The GROUP BY clause instructs the DBMS to group rows together by

one or more columns or expressions.

GROUP BY

Syntax
Here is a syntax of the GROUP BY clause.

 column_name(s)
 table_name

 condition
 column_name(s);

SELECT
FROM
WHERE
GROUP BY

Keep in mind that the GROUP BY clause must come after any WHERE clause

and before any ORDER BY clause.

Sample Table
To help you better understand the examples, and enable you to follow along

with the tutorial, we are going to use the following sample table.

SQL GROUP BY Statement - Learn By Example

Page 2

This table is part of an ‘Employee Management System’ that contains basic

information about employees.

ID Name City Job Salary HireDate

1 Bob New York Manager 60000 2012-03-07

2 Kim Chicago Manager 55000 2014-04-25

3 Eve New York Developer 32000 2015-03-11

4 Max New York Janitor 9000 2015-01-15

5 Joe Chicago Developer 30000 2016-10-05

6 Amy New York Developer 31000 2013-05-13

7 Ray New York Developer 31500 2016-01-15

8 Sam Chicago Janitor 10000 2012-02-10

9 Liv Chicago Developer 30000 2014-08-10

10 Ian New York Janitor 8500 2018-01-12

Single-Column Grouping
Single-column groups are the simplest and most frequently used type of

grouping. For example, if you want to �nd the number of employees hired for a

speci�c job title, you need to group the data by a ‘Job’ column, such as:

 Job, (*) emp_count
 Employees

 Job;

SELECT COUNT AS
FROM
GROUP BY

SQL GROUP BY Statement - Learn By Example

Page 3

Job emp_count

Developer 5

Janitor 3

Manager 2

The above query speci�es two columns, which has different job titles and

 which is a calculated �eld created using the function.

The GROUP BY clause instructs the DBMS to group the data by job and then

count the number of employees for each group.

job

emp_count COUNT(*)

Multicolumn Grouping
The GROUP BY clause can contain more than one column. This enables you to

nest groups, giving you more control over how data is grouped.

For example, let’s say you want to �nd the employee count not just for each job

title, but for both job titles and cities. The following example shows how you

can accomplish this:

 City, Job, (*) emp_count
 Employees

 City, Job;

SELECT COUNT AS
FROM
GROUP BY

SQL GROUP BY Statement - Learn By Example

Page 4

City Job emp_count

Chicago Developer 2

Chicago Janitor 1

Chicago Manager 1

New York Developer 3

New York Janitor 2

New York Manager 1

This version of the query generates 6 rows, one for each combination of ‘City’

and ‘Job’ found in the ‘Employees’ table.

Note that along with the ‘Job’ column, the ‘City’ column is added to the GROUP

BY clause. This is because in SQL, every column in your SELECT statement

except the column created via the aggregate function must be present in the

GROUP BY clause.

Generating Rollups
Sometimes it is bene�cial to obtain summary totals within groups. SQL

provides such functionality using the ROLLUP expression. It is used to get

subtotals, or what is commonly referred to as super-aggregate rows plus a

grand total row.

Extending the previous example, let’s say that along with the employee count

for each city-job combination, you also want the total count for each distinct

city.

SQL GROUP BY Statement - Learn By Example

Page 5

In this case you could run an additional query and merge the results or you

could use the WITH ROLLUP option to have the DBMS do the work for you.

Here’s the extension of the previous query using WITH ROLLUP in the GROUP

BY clause:

 City, Job, (*) emp_count
 Employees

 City, Job WITH ROLLUP;

SELECT COUNT AS
FROM
GROUP BY

City Job emp_count

Chicago Developer 2

Chicago Janitor 1

Chicago Manager 1

Chicago NULL 4

New York Developer 3

New York Janitor 2

New York Manager 1

New York NULL 6

NULL NULL 10

There are now three additional rows (highlighted) in the result set, one for

each of the two distinct cities and one for the grand total. For the two city

rollups, a NULL value is provided for the ‘Job’ column, since the rollup is being

performed across all job titles. Whereas for the grand total row, a NULL value is

provided for both the ‘City’ and ‘Job’ columns.

SQL GROUP BY Statement - Learn By Example

Page 6

Looking at the fourth and eighth line of output, for example, you will �nd that a

total of 4 employees work from Chicago and 6 from New York. Whereas the last

line of the output shows that a total of 10 employees work for the company.

Grouping via Expressions
In addition to using columns, you can also use expressions to group data. It is

important to note that, if an expression is used in the SELECT, that same

expression must be speci�ed in GROUP BY clause.

For example, consider the following query, which groups employees by the year

they began working for the company:

 (HireDate) year, (*) emp_count
 Employees

 (HireDate);

SELECT YEAR AS COUNT AS
FROM
GROUP BY YEAR

year emp_count

2012 2

2013 1

2014 2

2015 2

2016 2

2018 1

This query uses the function to construct a fairly simple expression,

which returns only the year part of the date, to group the rows in an employee

table.

YEAR()

SQL GROUP BY Statement - Learn By Example

Page 7

Group Filter Conditions
After the data is grouped, you may want to apply a �lter condition to include or

exclude certain groups. Although your �rst instinct may be to use the WHERE

statement, it won’t really work because WHERE �lters the records, but not the

groups. SQL provides another clause, where you can place these types of �lter

conditions – .the HAVING clause

In the very �rst example of this tutorial, we �nd out the number of employees

hired for a speci�c job title. Let’s extend that query and get the list of jobs for

which less than �ve employees are hired.

 Job, (*) emp_count
 Employees

 Job
 (*) < ;

SELECT COUNT AS
FROM
GROUP BY
HAVING COUNT 5

Job emp_count

Janitor 3

Manager 2

The �rst three lines of this query are similar to the �rst example. The �nal line

adds a HAVING clause that �lters on those groups with a .COUNT(*) < 5

Read in detail about the HAVING clause .here

How Nulls Are Handled
If the grouping column contains a row with a NULL value, NULL will be

returned as a group.

https://www.learnbyexample.org/sql-having-clause/

SQL GROUP BY Statement - Learn By Example

Page 8

For example, suppose some employees in the ‘Employees’ table are not

assigned any job (assigned to NULL):

ID Name Job

1 Bob Manager

2 Kim Developer

3 Ray NULL

4 Max Janitor

5 Joe Developer

6 Amy NULL

7 Eve Developer

8 Sam Janitor

Now let’s group the table by ‘Job’ column:

 Job, (*) emp_count
 Employees

 Job;

SELECT COUNT AS
FROM
GROUP BY

Job emp_count

NULL 2

Developer 3

Janitor 2

Manager 1

SQL GROUP BY Statement - Learn By Example

Page 9

As you can see there are several rows with NULL values in the ‘Job’ column,

they are all grouped together and included at the top of the result set.

