
SQL Aggregate Functions - Learn By Example

SQL for Citizen Data
Scientists

SETScholars & WACAMLDS

https://wacamlds.podia.com/


SQL Aggregate Functions - Learn By Example

Page 1

It is often necessary to summarize data for analysis and reporting purposes. Be

it determining the number of rows in a table, obtaining the sum of column’s

values, or �nding the column’s highest, lowest, or average value.

Aggregate functions are used for this type of retrieval. Although each DBMS

has its own set of aggregate functions, the common aggregate functions

implemented by all major DBMSs include:

Functions Description

Count() Returns the number of values in a column

Sum() Returns the sum of the values in a column

Avg() Returns the average value of a column

Min() Returns the lowest value in a column

Max() Returns the highest value in a column

These functions are so ef�cient that they usually return results much faster

than you can compute them within your client application.

Sample Table
To help you better understand the examples, and enable you to follow along

with the tutorial, we are going to use the following sample table.

This table is part of an ‘Employee Management System’ that contains basic

information about employees.



SQL Aggregate Functions - Learn By Example

Page 2

ID Name Age Job Salary Email

1 Joe 28 Manager 60000 joe@mail.com

2 Eve 24 Developer 32000 eve@mail.com

3 Sam 26 Janitor 9000 NULL

4 Kim 25 Manager 55000 kim@mail.com

5 Bob 23 Developer 30000 bob@mail.com

6 Max 27 Janitor 10000 NULL

The AVG() Function
 function is used to calculate the average value of a speci�c column.

 requires that the column name must be speci�ed as a function

parameter.

AVG()

AVG()

This �rst example uses  to return the average salary of all employees in

the ‘Employees’ table:

AVG()

 (Salary)  avg_salary 
 Employees;

SELECT AVG AS
FROM

The SELECT statement above returns a single value containing the average

salary of all employees.  is an alias for the newly computed column.avg_salary

With  you can also calculate the average value of speci�c rows. The

following example returns the average salary of all ‘Managers’:

AVG()

 (Salary)  avg_salary 
 Employees 

 Job= ;

SELECT AVG AS
FROM
WHERE 'Manager'



SQL Aggregate Functions - Learn By Example

Page 3

This example is the same as the previous SELECT statement, but this time it

contains a WHERE clause. The WHERE clause �lters only employees with a

manager’s job title, and therefore, the value returned in  is the

average of the salaries of those employees only.

avg_salary

The MAX() Function
 returns the highest value in a speci�ed column. Just like ,

 also requires that the column name be speci�ed as a function

parameter.

MAX() AVG()

MAX()

Here  returns the salary of the highest paid employee in the

‘Employees’ table.

MAX()

 (Salary)  max_salary 
 Employees;

SELECT MAX AS
FROM

Although  is commonly used to �nd the highest value in a numeric

column, many DBMS allow it to be used to return the highest value in a text

column. When used with text data,  returns the highest value in

alphabetical order.

MAX()

MAX()

 (Name) 
 Employees;

SELECT MAX
FROM

The MIN() Function
 does the exact opposite of ; it returns the lowest value in a

speci�ed column.

MIN() MAX()

Here  returns the salary of the lowest paid employee in the ‘Employees’

table.

MIN()



SQL Aggregate Functions - Learn By Example

Page 4

 (Salary)  min_salary 
 Employees;

SELECT MIN AS
FROM

Like ,  is commonly used to �nd the lowest value in a numeric

column. When used with text data, however,  returns the lowest value

in alphabetical order.

MAX() MIN()

MIN()

 (Name) 
 Employees;

SELECT MIN
FROM

The SUM() Function
 is used to calculate the sum of the values in a speci�c column. Like

other aggregate functions,  also requires that the column name be

speci�ed as a function parameter.

SUM()

SUM()

The following example returns the total of the salary (the sum of all the Salary

values) paid to the employees.

 (Salary)  total_salary 
 Employees;

SELECT SUM AS
FROM

The COUNT() Function
, as its name suggests, is used to count the number of rows in a table

or the number of rows that match a speci�c criterion.

COUNT()

Unlike others, you can pass an asterisk or a column name to  as a

function parameter. Depending on what you pass,  works differently:

COUNT()

COUNT()



SQL Aggregate Functions - Learn By Example

Page 5

1. : If you pass an asterisk, it counts the number of rows in the table,

whether the column contains NULL values or not.

COUNT(*)

2. : If you pass a column name instead of an asterisk, it counts the

number of values in that column, ignoring the NULL values.

COUNT(column)

The �rst example returns the total number of employees in the ‘Employees’

table:

 (*)  num_emp 
 Employees;

SELECT COUNT AS
FROM

In this example, an asterisk is passed to the , so it counts the

number of rows in the table even though some columns have NULL values.

COUNT()

The next example counts just the employees with an e-mail address:

 (Email)  num_emp 
 Employees;

SELECT COUNT AS
FROM

In this example, the column name ‘Email’ is passed to the  function,

so it only counts non-NULL values in that column. Since only 4 out of 6

employees have email addresses,  is 4.

COUNT()

num_emp

Using Expressions
In addition to using a column name, you can also use an expression as an

argument to aggregate functions.

For example, you may want to �nd the total of salary when each employee gets

a 10% increase. You can achieve this through the following query:

 (Salary * )  total_salary 
 Employees;

SELECT SUM 1.1 AS
FROM



SQL Aggregate Functions - Learn By Example

Page 6

While this example uses a simple expression, expressions used as arguments to

aggregate functions can be as complex as necessary as long as they return a

number, string, or date.

Aggregates on Distinct Values
When using aggregate functions, you have a choice of performing calculations

on all values in a column or only on unique values. To only include unique

values, you need to specify the DISTINCT argument.

The following example uses the  function to return the count of

unique jobs.

COUNT()

 (  Job)  jobs 
 Employees;

SELECT COUNT DISTINCT AS
FROM

Here the DISTINCT keyword makes sure that the COUNT only takes into

account unique jobs.

Note that the DISTINCT keyword can only be used when you specify a column

name in the  function and not with .COUNT() COUNT(*)

Combining Aggregate Functions
So far we have been using only one aggregate function in our SELECT

statement, but in fact you can use as many aggregate functions as you need.

Here is a query that uses all of the common aggregate functions to return �ve

values (the number of employees, and the highest, lowest, average and total of

their salary)



SQL Aggregate Functions - Learn By Example

Page 7

 (*)  num_emp, 
       (Salary)  min_salary, 
       (Salary)  max_salary, 
       (Salary)  avg_salary, 
    (Salary)  total_salary 

 Employees;

SELECT COUNT AS
MIN AS
MAX AS
AVG AS

SUM AS
FROM

num_emp min_salary max_salary avg_salary total_salary

6 9000 60000 32666 196000

Aggregates on Grouped Data
So far we have executed aggregate functions on all the data in a table. But,

what if you want to execute them separately for each job? To answer such a

query, you will need to divide the data into logical sets by grouping them and

then perform aggregate calculations on each group.

With the GROUP BY clause you can specify explicitly how the data should be

grouped and then work on each group separately.

To demonstrate, let’s extend the previous query to execute the same �ve

aggregate functions separately for each job.

 Job, 
       (*)  num_emp, 
       (Salary)  min_salary, 
       (Salary)  max_salary, 
       (Salary)  avg_salary, 
    (Salary)  total_salary 

 Employees 
 Job;

SELECT
COUNT AS
MIN AS
MAX AS
AVG AS

SUM AS
FROM
GROUP BY



SQL Aggregate Functions - Learn By Example

Page 8

Job num_emp min_salary max_salary avg_salary total_salary

Developer 2 30000 32000 31000 62000

Janitor 2 9000 10000 9500 19000

Manager 2 55000 60000 57500 115000

Now that the GROUP BY clause is included, SQL grouped the rows of the same

values present in the ‘Job’ column together and then applied �ve aggregate

functions to each of the three groups.

Read in detail about the Group By clause .here

How Nulls Are Handled
Before performing aggregations, it is important to know how these �ve

aggregate functions handle NULL values in a column.

To demonstrate let’s consider the following ‘Grocery’ table:

ID Name Qty

1 Oranges 5

2 Apples 8

3 Bananas 6

4 Lettuce 7

5 Tomatoes 5

6 Eggs 12

https://www.learnbyexample.org/sql-group-by-statement/


SQL Aggregate Functions - Learn By Example

Page 9

Now let’s perform �ve aggregate functions on the ‘Qty’ column:

 (*)  num_rows, 
       (Qty)  num_vals, 
       (Qty)  min_val, 
       (Qty)  max_val, 
       (Qty)  avg_val, 
    (Qty)  total 

 Grocery;

SELECT COUNT AS
COUNT AS
MIN AS
MAX AS
AVG AS

SUM AS
FROM

num_rows num_vals min_val max_val avg_val total

6 6 5 12 7 43

The results are as you would expect: both  and  return the

value 6,  returns the value 5,  returns 12,  returns 7,

and  returns 43.

count(*) count(Qty)

min(Qty) max(Qty) avg(Qty)

sum(Qty)

Next, let’s add a NULL value to the ‘Qty’ column:

ID Name Qty

1 Oranges 5

2 Apples 8

3 Bananas 6

4 Lettuce 7

5 Tomatoes 5

6 Eggs 12

7 Milk NULL



SQL Aggregate Functions - Learn By Example

Page 10

If you run the same query again, you will get the following result:

num_rows num_vals min_val max_val avg_val total

7 6 5 12 7 43

As you can see even with the addition of the NULL value for the table, the

, , , and  functions all return the same value, indicating

that they ignore any NULL value.

sum() min() max() avg()

The , however, now returns the value 7, which is valid since there are

seven rows in the ‘grocery’ table, while the  still returns the value 6.

The difference is that  counts the number of rows, while 

counts the number of values   contained in the ‘Qty’ column and ignores null

values.

count(*)

count(Qty)

count(*) count(Qty)


