Classification Accuracy

In [1]:
import warnings
warnings.filterwarnings("ignore")

# Cross Validation Classification Accuracy

from pandas import read_csv
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.data.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values
X = array[:,0:8]
Y = array[:,8]

kfold = KFold(n_splits=10, random_state=7)

model = LogisticRegression()

scoring = 'accuracy'

results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

print()
print("Accuracy: %.3f (%.3f)" % (results.mean(), results.std()))
Accuracy: 0.770 (0.048)