# Time Series Analysis using Poly Models in R using BJ Sales Dataset | Data Science tutorials in R

The BJ Sales dataset from UCI (University of California, Irvine) is a collection of 42 observations and 1 feature that are used to forecast the number of sales of a certain product in Beijing. Each observation represents a month, and the feature represents the number of sales for that month. The goal of this dataset is to train a model that can accurately forecast the number of sales for future months based on the historical data.

Time Series Analysis is a method used to understand and analyze historical data and make predictions about future events. One of the models used for time series analysis is the Polynomial Model. Polynomial models are a type of linear model that can capture non-linear patterns in the data by including polynomial terms.

The first step is to load the data into R. The UCI dataset contains information about the sales in Beijing and can be downloaded from the UCI website. Once the data is loaded, it’s important to make sure that the variables are in the correct format, such as numeric for continuous variables.

The next step is to prepare the data for the model. This includes cleaning the data, handling missing values, and transforming the variables if necessary. It’s also important to split the data into a training set and a test set. The training set is used to train the model, while the test set is used to evaluate the performance of the model.

The next step is to fit the polynomial model to the data. This involves specifying the dependent and independent variables, and selecting the appropriate model type, such as linear, quadratic, cubic and so on. It’s important to evaluate the performance of the model using the test set and adjust the parameters of the model if necessary.

Once the model is fitted, the next step is to make predictions. The model can be used to make predictions on new data, and it’s important to remember that the model is only as good as the data it was trained on, and it’s important to keep updating the model with new data and retraining it as necessary.

In conclusion, Time Series Analysis using the Polynomial Model in R with the BJ Sales dataset from UCI is a multi-step process that includes loading the data, preparing the data, fitting the polynomial model, evaluating its performance, and using the model to make predictions. Polynomial models are a type of linear model that can capture non-linear patterns in the data by including polynomial terms. The BJ Sales dataset is a valuable resource for researchers and practitioners who want to gain experience in time series analysis and sales prediction using polynomial models.

It’s important to note that Polynomial models can capture non-linear patterns in the data but they might not generalize well to unseen data and they might also be prone to overfitting, especially if the degree of the polynomial is too high. Therefore, it’s important to evaluate the performance of the model using different metrics such as R-Squared, Mean Absolute Error and visualize the results to have a better understanding of the model.

To avoid overfitting, it’s a good practice to use techniques such as cross-validation and grid search to fine-tune the parameters of the model and also to use techniques such as regularization to prevent the model from overfitting the training data. It’s also important to choose the appropriate degree of the polynomial and to use techniques such as dimensionality reduction to avoid overfitting.

Another important consideration when using polynomial models is that the data might not be linear, and it might be necessary to apply some transformations to the variables before fitting the model. For example, a logarithmic transformation can be used to make the data more linear.

Overall, Time Series Analysis using the Polynomial Model in R with the BJ Sales dataset is a powerful method for making predictions and understanding the underlying patterns in the data. It requires a deep understanding of the data, the problem at hand and the model itself, but it can be a valuable tool for making accurate predictions and understanding the time series data. Polynomial models are widely used in Time Series Analysis and are considered an alternative to linear models when the data is non-linear. This dataset can be used to gain experience in time series forecasting and sales prediction using polynomial models and a good starting point for researchers and practitioners who want to work on Time Series Analysis.

In this Applied Machine Learning & Data Science Recipe (Jupyter Notebook), the reader will find the practical use of applied machine learning and data science in R programming: Time Series Analysis using Poly Models in R using BJ Sales Dataset.

Time Series Analysis using Poly Models in R using BJ Sales Dataset:

# Personal Career & Learning Guide for Data Analyst, Data Engineer and Data Scientist

## Applied Machine Learning & Data Science Projects and Coding Recipes for Beginners

A list of FREE programming examples together with eTutorials & eBooks @ SETScholars

# Projects and Coding Recipes, eTutorials and eBooks: The best All-in-One resources for Data Analyst, Data Scientist, Machine Learning Engineer and Software Developer

Topics included: Classification, Clustering, Regression, Forecasting, Algorithms, Data Structures, Data Analytics & Data Science, Deep Learning, Machine Learning, Programming Languages and Software Tools & Packages.
(Discount is valid for limited time only)

`Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.`

# Learn by Coding: v-Tutorials on Applied Machine Learning and Data Science for Beginners

There are 2000+ End-to-End Python & R Notebooks are available to build Professional Portfolio as a Data Scientist and/or Machine Learning Specialist. All Notebooks are only \$29.95. We would like to request you to have a look at the website for FREE the end-to-end notebooks, and then decide whether you would like to purchase or not.

Please do not waste your valuable time by watching videos, rather use end-to-end (Python and R) recipes from Professional Data Scientists to practice coding, and land the most demandable jobs in the fields of Predictive analytics & AI (Machine Learning and Data Science).

The objective is to guide the developers & analysts to “Learn how to Code” for Applied AI using end-to-end coding solutions, and unlock the world of opportunities!