(R Tutorials for Citizen Data Scientist) Statistics with R for Business Analysts – Random Forest In the random forest approach, a large number of decision trees are created. Every observation is fed into every decision tree. The most common outcome for each observation is used as the final output. A new observation is fed into …

## Deep Learning in R with Dropout Layer | Data Science for Beginners | Regression | Tensorflow | Keras

Deep learning is a powerful machine learning technique that allows for the creation of complex models to solve difficult problems. In this article, we will be discussing how to use dropout layers in R to improve the performance of a deep learning model for regression tasks. Dropout is a regularization technique that is used …

## Deep Learning in R | Data Science for Beginners | Tensorflow | Keras | House Price Data | Regression

Deep learning is a subset of machine learning that involves training artificial neural networks to perform tasks such as image or speech recognition, natural language processing, and predictive modeling. In this article, we will discuss how to use deep learning in R to perform regression on a housing price dataset using the Tensorflow …

Machine learning is a method of teaching computers to learn from data, without being explicitly programmed. In R, there are many libraries available for machine learning, such as caret, randomForest, and nnet. One of the most popular datasets for machine learning is the Boston house price dataset, which is available in the …

Machine learning is a technique that allows computers to learn from data and make predictions or decisions without being explicitly programmed. In this article, we will discuss how to use the Random Forest algorithm for regression tasks in R with the Boston House Data from the UCI Machine Learning Repository. First, we …