Statistics with R for Business Analysts – Analysis of Covariance

(R Tutorials for Citizen Data Scientist)

Statistics with R for Business Analysts – Analysis of Covariance

We use Regression analysis to create models which describe the effect of variation in predictor variables on the response variable. Sometimes, if we have a categorical variable with values like Yes/No or Male/Female etc. The simple regression analysis gives multiple results for each value of the categorical variable. In such scenario, we can study the effect of the categorical variable by using it along with the predictor variable and comparing the regression lines for each level of the categorical variable. Such an analysis is termed as Analysis of Covariance also called as ANCOVA.

Example

Consider the R built in data set mtcars. In it we observer that the field “am” represents the type of transmission (auto or manual). It is a categorical variable with values 0 and 1. The miles per gallon value(mpg) of a car can also depend on it besides the value of horse power(“hp”).

We study the effect of the value of “am” on the regression between “mpg” and “hp”. It is done by using the aov() function followed by the anova() function to compare the multiple regressions.

Input Data

Create a data frame containing the fields “mpg”, “hp” and “am” from the data set mtcars. Here we take “mpg” as the response variable, “hp” as the predictor variable and “am” as the categorical variable.

input <- mtcars[,c("am","mpg","hp")]
print(head(input))

When we execute the above code, it produces the following result −

                   am   mpg   hp
Mazda RX4          1    21.0  110
Mazda RX4 Wag      1    21.0  110
Datsun 710         1    22.8   93
Hornet 4 Drive     0    21.4  110
Hornet Sportabout  0    18.7  175
Valiant            0    18.1  105

ANCOVA Analysis

We create a regression model taking “hp” as the predictor variable and “mpg” as the response variable taking into account the interaction between “am” and “hp”.

Model with interaction between categorical variable and predictor variable

# Get the dataset.
input <- mtcars

# Create the regression model.
result <- aov(mpg~hp*am,data = input)
print(summary(result))

When we execute the above code, it produces the following result −

            Df Sum Sq Mean Sq F value   Pr(>F)    
hp           1  678.4   678.4  77.391 1.50e-09 ***
am           1  202.2   202.2  23.072 4.75e-05 ***
hp:am        1    0.0     0.0   0.001    0.981    
Residuals   28  245.4     8.8                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This result shows that both horse power and transmission type has significant effect on miles per gallon as the p value in both cases is less than 0.05. But the interaction between these two variables is not significant as the p-value is more than 0.05.

Model without interaction between categorical variable and predictor variable

# Get the dataset.
input <- mtcars

# Create the regression model.
result <- aov(mpg~hp+am,data = input)
print(summary(result))

When we execute the above code, it produces the following result −

            Df  Sum Sq  Mean Sq   F value   Pr(>F)    
hp           1  678.4   678.4   80.15 7.63e-10 ***
am           1  202.2   202.2   23.89 3.46e-05 ***
Residuals   29  245.4     8.5                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This result shows that both horse power and transmission type has significant effect on miles per gallon as the p value in both cases is less than 0.05.

Comparing Two Models

Now we can compare the two models to conclude if the interaction of the variables is truly in-significant. For this we use the anova() function.

# Get the dataset.
input <- mtcars

# Create the regression models.
result1 <- aov(mpg~hp*am,data = input)
result2 <- aov(mpg~hp+am,data = input)

# Compare the two models.
print(anova(result1,result2))

When we execute the above code, it produces the following result −

Model 1: mpg ~ hp * am
Model 2: mpg ~ hp + am
  Res.Df    RSS Df  Sum of Sq     F Pr(>F)
1     28 245.43                           
2     29 245.44 -1 -0.0052515 6e-04 0.9806

As the p-value is greater than 0.05 we conclude that the interaction between horse power and transmission type is not significant. So the mileage per gallon will depend in a similar manner on the horse power of the car in both auto and manual transmission mode.

 

Python Data Visualisation for Business Analyst – How to do Categorical Plots in Python

 

Statistics with R for Business Analysts – Analysis of Covariance

Personal Career & Learning Guide for Data Analyst, Data Engineer and Data Scientist

Applied Machine Learning & Data Science Projects and Coding Recipes for Beginners

A list of FREE programming examples together with eTutorials & eBooks @ SETScholars

95% Discount on “Projects & Recipes, tutorials, ebooks”

Projects and Coding Recipes, eTutorials and eBooks: The best All-in-One resources for Data Analyst, Data Scientist, Machine Learning Engineer and Software Developer

Topics included: Classification, Clustering, Regression, Forecasting, Algorithms, Data Structures, Data Analytics & Data Science, Deep Learning, Machine Learning, Programming Languages and Software Tools & Packages.
(Discount is valid for limited time only)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.

Learn by Coding: v-Tutorials on Applied Machine Learning and Data Science for Beginners

Please do not waste your valuable time by watching videos, rather use end-to-end (Python and R) recipes from Professional Data Scientists to practice coding, and land the most demandable jobs in the fields of Predictive analytics & AI (Machine Learning and Data Science).

The objective is to guide the developers & analysts to “Learn how to Code” for Applied AI using end-to-end coding solutions, and unlock the world of opportunities!