SQL tutorials for Business Analyst – SQL | NULL Values

Hits: 20

(SQL tutorials for Business Analyst & Beginners)

In this end-to-end example, you will learn – SQL Tutorials for Business Analyst: SQL | NULL Values.

 

The SQL NULL is the term used to represent a missing value. A NULL value in a table is a value in a field that appears to be blank.

A field with a NULL value is a field with no value. It is very important to understand that a NULL value is different than a zero value or a field that contains spaces.

Syntax

The basic syntax of NULL while creating a table.

SQL> CREATE TABLE CUSTOMERS(
   ID   INT              NOT NULL,
   NAME VARCHAR (20)     NOT NULL,
   AGE  INT              NOT NULL,
   ADDRESS  CHAR (25) ,
   SALARY   DECIMAL (18, 2),       
   PRIMARY KEY (ID)
);

Here, NOT NULL signifies that column should always accept an explicit value of the given data type. There are two columns where we did not use NOT NULL, which means these columns could be NULL.

A field with a NULL value is the one that has been left blank during the record creation.

Example

The NULL value can cause problems when selecting data. However, because when comparing an unknown value to any other value, the result is always unknown and not included in the results. You must use the IS NULL or IS NOT NULL operators to check for a NULL value.

Consider the following CUSTOMERS table having the records as shown below.

+----+----------+-----+-----------+----------+
| ID | NAME     | AGE | ADDRESS   | SALARY   |
+----+----------+-----+-----------+----------+
|  1 | Ramesh   |  32 | Ahmedabad |  2000.00 |
|  2 | Khilan   |  25 | Delhi     |  1500.00 |
|  3 | kaushik  |  23 | Kota      |  2000.00 |
|  4 | Chaitali |  25 | Mumbai    |  6500.00 |
|  5 | Hardik   |  27 | Bhopal    |  8500.00 |
|  6 | Komal    |  22 | MP        |          |
|  7 | Muffy    |  24 | Indore    |          |
+----+----------+-----+-----------+----------+

Now, following is the usage of the IS NOT NULLoperator.

SQL> SELECT  ID, NAME, AGE, ADDRESS, SALARY
   FROM CUSTOMERS
   WHERE SALARY IS NOT NULL;

This would produce the following result −

+----+----------+-----+-----------+----------+
| ID | NAME     | AGE | ADDRESS   | SALARY   |
+----+----------+-----+-----------+----------+
|  1 | Ramesh   |  32 | Ahmedabad |  2000.00 |
|  2 | Khilan   |  25 | Delhi     |  1500.00 |
|  3 | kaushik  |  23 | Kota      |  2000.00 |
|  4 | Chaitali |  25 | Mumbai    |  6500.00 |
|  5 | Hardik   |  27 | Bhopal    |  8500.00 |
+----+----------+-----+-----------+----------+

Now, following is the usage of the IS NULL operator.

SQL> SELECT  ID, NAME, AGE, ADDRESS, SALARY
   FROM CUSTOMERS
   WHERE SALARY IS NULL;

This would produce the following result −

+----+----------+-----+-----------+----------+
| ID | NAME     | AGE | ADDRESS   | SALARY   |
+----+----------+-----+-----------+----------+
|  6 | Komal    |  22 | MP        |          |
|  7 | Muffy    |  24 | Indore    |          |
+----+----------+-----+-----------+----------+

 

Personal Career & Learning Guide for Data Analyst, Data Engineer and Data Scientist

Applied Machine Learning & Data Science Projects and Coding Recipes for Beginners

A list of FREE programming examples together with eTutorials & eBooks @ SETScholars

95% Discount on “Projects & Recipes, tutorials, ebooks”

Projects and Coding Recipes, eTutorials and eBooks: The best All-in-One resources for Data Analyst, Data Scientist, Machine Learning Engineer and Software Developer

Topics included: Classification, Clustering, Regression, Forecasting, Algorithms, Data Structures, Data Analytics & Data Science, Deep Learning, Machine Learning, Programming Languages and Software Tools & Packages.
(Discount is valid for limited time only)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.

Learn by Coding: v-Tutorials on Applied Machine Learning and Data Science for Beginners

Please do not waste your valuable time by watching videos, rather use end-to-end (Python and R) recipes from Professional Data Scientists to practice coding, and land the most demandable jobs in the fields of Predictive analytics & AI (Machine Learning and Data Science).

The objective is to guide the developers & analysts to “Learn how to Code” for Applied AI using end-to-end coding solutions, and unlock the world of opportunities!