SQL tutorials for Business Analyst – SQL | Distinct Keyword

Hits: 18

(SQL tutorials for Business Analyst & Beginners)

In this end-to-end example, you will learn – SQL Tutorials for Business Analyst: SQL | Distinct Keyword.

 

The SQL DISTINCT keyword is used in conjunction with the SELECT statement to eliminate all the duplicate records and fetching only unique records.

There may be a situation when you have multiple duplicate records in a table. While fetching such records, it makes more sense to fetch only those unique records instead of fetching duplicate records.

Syntax

The basic syntax of DISTINCT keyword to eliminate the duplicate records is as follows −

SELECT DISTINCT column1, column2,.....columnN 
FROM table_name
WHERE [condition]

Example

Consider the CUSTOMERS table having the following records −

+----+----------+-----+-----------+----------+
| ID | NAME     | AGE | ADDRESS   | SALARY   |
+----+----------+-----+-----------+----------+
|  1 | Ramesh   |  32 | Ahmedabad |  2000.00 |
|  2 | Khilan   |  25 | Delhi     |  1500.00 |
|  3 | kaushik  |  23 | Kota      |  2000.00 |
|  4 | Chaitali |  25 | Mumbai    |  6500.00 |
|  5 | Hardik   |  27 | Bhopal    |  8500.00 |
|  6 | Komal    |  22 | MP        |  4500.00 |
|  7 | Muffy    |  24 | Indore    | 10000.00 |
+----+----------+-----+-----------+----------+

First, let us see how the following SELECT query returns the duplicate salary records.

SQL> SELECT SALARY FROM CUSTOMERS
   ORDER BY SALARY;

This would produce the following result, where the salary (2000) is coming twice which is a duplicate record from the original table.

+----------+
| SALARY   |
+----------+
|  1500.00 |
|  2000.00 |
|  2000.00 |
|  4500.00 |
|  6500.00 |
|  8500.00 |
| 10000.00 |
+----------+

Now, let us use the DISTINCT keyword with the above SELECT query and then see the result.

SQL> SELECT DISTINCT SALARY FROM CUSTOMERS
   ORDER BY SALARY;

This would produce the following result where we do not have any duplicate entry.

+----------+
| SALARY   |
+----------+
|  1500.00 |
|  2000.00 |
|  4500.00 |
|  6500.00 |
|  8500.00 |
| 10000.00 |
+----------+

 

Personal Career & Learning Guide for Data Analyst, Data Engineer and Data Scientist

Applied Machine Learning & Data Science Projects and Coding Recipes for Beginners

A list of FREE programming examples together with eTutorials & eBooks @ SETScholars

95% Discount on “Projects & Recipes, tutorials, ebooks”

Projects and Coding Recipes, eTutorials and eBooks: The best All-in-One resources for Data Analyst, Data Scientist, Machine Learning Engineer and Software Developer

Topics included: Classification, Clustering, Regression, Forecasting, Algorithms, Data Structures, Data Analytics & Data Science, Deep Learning, Machine Learning, Programming Languages and Software Tools & Packages.
(Discount is valid for limited time only)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.

Learn by Coding: v-Tutorials on Applied Machine Learning and Data Science for Beginners

Please do not waste your valuable time by watching videos, rather use end-to-end (Python and R) recipes from Professional Data Scientists to practice coding, and land the most demandable jobs in the fields of Predictive analytics & AI (Machine Learning and Data Science).

The objective is to guide the developers & analysts to “Learn how to Code” for Applied AI using end-to-end coding solutions, and unlock the world of opportunities!

 

How to delete duplicates from Pandas DataFrame in Python