Snowflake for Beginners – Query DESCRIBE TABLE like a table

Hits: 205

Query DESCRIBE TABLE like a table

 

DESCRIBE TABLE is a powerful tool for understanding the structure of a table. However, in Snowflake the output of DESCRIBE TABLE is not treated like a regular table (i.e. can be manipulated using SELECT). To query DESCRIBE TABLE as a regular table we have to first run it, then run a SELECT query on the last query run which will be DESCRIBE TABLE.

Create Table Of Superheroes

- Create a table called SUPERHEROES. If it already exists, replace it.
CREATE OR REPLACE TABLE SUPERHEROES (
  - Column called ID allowing up to five characters
  "ID" VARCHAR(5), 
  - Column called NAME allowing up to 100 characters
  "NAME" VARCHAR(100),
  - Column called ALTER_EGO allowing up to 100 characters
  "ALTER_EGO" VARCHAR(100)
);

Insert Rows For Each Superhero

- Insert rows into SUPERHEROES
INSERT INTO SUPERHEROES 
    - With the values
    VALUES
    ('XF6K4', 'Chris Maki', 'The Bomber'),
    ('KD5SK', 'Donny Mav', 'Nuke Miner');

Describe The Table

- Describe the table SUPERHEROES
DESCRIBE TABLE SUPERHEROES;

Run A Query On The Describe Query’s Output

- Select the "name" and "type" columns
SELECT "name", "type" 
- Of the last query (in this case the DESCRIBE TABLE query)
FROM TABLE(RESULT_SCAN(LAST_QUERY_ID()))
;
name type
ID VARCHAR(5)
NAME VARCHAR(100)
ALTER_EGO VARCHAR(100)

 

Python Example for Beginners

Two Machine Learning Fields

There are two sides to machine learning:

  • Practical Machine Learning:This is about querying databases, cleaning data, writing scripts to transform data and gluing algorithm and libraries together and writing custom code to squeeze reliable answers from data to satisfy difficult and ill defined questions. It’s the mess of reality.
  • Theoretical Machine Learning: This is about math and abstraction and idealized scenarios and limits and beauty and informing what is possible. It is a whole lot neater and cleaner and removed from the mess of reality.

Data Science Resources: Data Science Recipes and Applied Machine Learning Recipes

Introduction to Applied Machine Learning & Data Science for Beginners, Business Analysts, Students, Researchers and Freelancers with Python & R Codes @ Western Australian Center for Applied Machine Learning & Data Science (WACAMLDS) !!!

Latest end-to-end Learn by Coding Recipes in Project-Based Learning:

Applied Statistics with R for Beginners and Business Professionals

Data Science and Machine Learning Projects in Python: Tabular Data Analytics

Data Science and Machine Learning Projects in R: Tabular Data Analytics

Python Machine Learning & Data Science Recipes: Learn by Coding

R Machine Learning & Data Science Recipes: Learn by Coding

Comparing Different Machine Learning Algorithms in Python for Classification (FREE)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.  

Google –> SETScholars