## (R Tutorials for Citizen Data Scientist)

## R Visualisation for Beginners – Scatterplots

Scatterplots show many points plotted in the Cartesian plane. Each point represents the values of two variables. One variable is chosen in the horizontal axis and another in the vertical axis.

The simple scatterplot is created using the **plot()** function.

### Syntax

The basic syntax for creating scatterplot in R is −

plot(x, y, main, xlab, ylab, xlim, ylim, axes)

Following is the description of the parameters used −

**x**is the data set whose values are the horizontal coordinates.**y**is the data set whose values are the vertical coordinates.**main**is the tile of the graph.**xlab**is the label in the horizontal axis.**ylab**is the label in the vertical axis.**xlim**is the limits of the values of x used for plotting.**ylim**is the limits of the values of y used for plotting.**axes**indicates whether both axes should be drawn on the plot.

### Example

We use the data set **“mtcars”** available in the R environment to create a basic scatterplot. Let’s use the columns “wt” and “mpg” in mtcars.

input <- mtcars[,c('wt','mpg')] print(head(input))

When we execute the above code, it produces the following result −

wt mpg Mazda RX4 2.620 21.0 Mazda RX4 Wag 2.875 21.0 Datsun 710 2.320 22.8 Hornet 4 Drive 3.215 21.4 Hornet Sportabout 3.440 18.7 Valiant 3.460 18.1

## Creating the Scatterplot

The below script will create a scatterplot graph for the relation between wt(weight) and mpg(miles per gallon).

# Get the input values. input <- mtcars[,c('wt','mpg')] # Give the chart file a name. png(file = "scatterplot.png") # Plot the chart for cars with weight between 2.5 to 5 and mileage between 15 and 30. plot(x = input$wt,y = input$mpg, xlab = "Weight", ylab = "Milage", xlim = c(2.5,5), ylim = c(15,30), main = "Weight vs Milage" ) # Save the file. dev.off()

When we execute the above code, it produces the following result −

## Scatterplot Matrices

When we have more than two variables and we want to find the correlation between one variable versus the remaining ones we use scatterplot matrix. We use **pairs()** function to create matrices of scatterplots.

### Syntax

The basic syntax for creating scatterplot matrices in R is −

pairs(formula, data)

Following is the description of the parameters used −

**formula**represents the series of variables used in pairs.**data**represents the data set from which the variables will be taken.

### Example

Each variable is paired up with each of the remaining variable. A scatterplot is plotted for each pair.

# Give the chart file a name. png(file = "scatterplot_matrices.png") # Plot the matrices between 4 variables giving 12 plots. # One variable with 3 others and total 4 variables. pairs(~wt+mpg+disp+cyl,data = mtcars, main = "Scatterplot Matrix") # Save the file. dev.off()

When the above code is executed we get the following output.

Scatter Matrix Plots | Jupyter Notebook | Python Data Science for beginners

## R Visualisation for Beginners – Scatterplots

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause.The information presented here could also be found in public knowledge domains.

# Learn by Coding: v-Tutorials on Applied Machine Learning and Data Science for Beginners

Latest end-to-end Learn by Coding Projects (Jupyter Notebooks) in Python and R:

**All Notebooks in One Bundle: Data Science Recipes and Examples in Python & R****. **

**End-to-End Python Machine Learning Recipes & Examples.**

**End-to-End R Machine Learning Recipes & Examples.**

**Applied Statistics with R for Beginners and Business Professionals**

**Data Science and Machine Learning Projects in Python: Tabular Data Analytics**

**Data Science and Machine Learning Projects in R: Tabular Data Analytics**

**Python Machine Learning & Data Science Recipes: Learn by Coding**

**R Machine Learning & Data Science Recipes: Learn by Coding**

**Comparing Different Machine Learning Algorithms in Python for Classification (FREE)**

There are 2000+ End-to-End Python & R Notebooks are available to build **Professional Portfolio as a Data Scientist and/or Machine Learning Specialist**. All Notebooks are only $29.95. We would like to request you to have a look at the website for FREE the end-to-end notebooks, and then decide whether you would like to purchase or not.