PostgreSQL tutorial for Beginners – PostgreSQL – DELETE Query

PostgreSQL – DELETE Query

 

The PostgreSQL DELETE Query is used to delete the existing records from a table. You can use WHERE clause with DELETE query to delete the selected rows. Otherwise, all the records would be deleted.

Syntax

The basic syntax of DELETE query with WHERE clause is as follows −

DELETE FROM table_name
WHERE [condition];

You can combine N number of conditions using AND or OR operators.

Example

Consider the table COMPANY, having records as follows −

# select * from COMPANY;
 id | name  | age | address   | salary
----+-------+-----+-----------+--------
  1 | Paul  |  32 | California|  20000
  2 | Allen |  25 | Texas     |  15000
  3 | Teddy |  23 | Norway    |  20000
  4 | Mark  |  25 | Rich-Mond |  65000
  5 | David |  27 | Texas     |  85000
  6 | Kim   |  22 | South-Hall|  45000
  7 | James |  24 | Houston   |  10000
(7 rows)

The following is an example, which would DELETE a customer whose ID is 7 −

testdb=# DELETE FROM COMPANY WHERE ID = 2;

Now, COMPANY table will have the following records −

 id | name  | age | address     | salary
----+-------+-----+-------------+--------
  1 | Paul  |  32 | California  |  20000
  3 | Teddy |  23 | Norway      |  20000
  4 | Mark  |  25 | Rich-Mond   |  65000
  5 | David |  27 | Texas       |  85000
  6 | Kim   |  22 | South-Hall  |  45000
  7 | James |  24 | Houston     |  10000
(6 rows)

If you want to DELETE all the records from COMPANY table, you do not need to use WHERE clause with DELETE queries, which would be as follows −

testdb=# DELETE FROM COMPANY;

Now, COMPANY table does not have any record because all the records have been deleted by the DELETE statement.

 

Python Example for Beginners

Two Machine Learning Fields

There are two sides to machine learning:

  • Practical Machine Learning:This is about querying databases, cleaning data, writing scripts to transform data and gluing algorithm and libraries together and writing custom code to squeeze reliable answers from data to satisfy difficult and ill defined questions. It’s the mess of reality.
  • Theoretical Machine Learning: This is about math and abstraction and idealized scenarios and limits and beauty and informing what is possible. It is a whole lot neater and cleaner and removed from the mess of reality.

Data Science Resources: Data Science Recipes and Applied Machine Learning Recipes

Introduction to Applied Machine Learning & Data Science for Beginners, Business Analysts, Students, Researchers and Freelancers with Python & R Codes @ Western Australian Center for Applied Machine Learning & Data Science (WACAMLDS) !!!

Latest end-to-end Learn by Coding Recipes in Project-Based Learning:

Applied Statistics with R for Beginners and Business Professionals

Data Science and Machine Learning Projects in Python: Tabular Data Analytics

Data Science and Machine Learning Projects in R: Tabular Data Analytics

Python Machine Learning & Data Science Recipes: Learn by Coding

R Machine Learning & Data Science Recipes: Learn by Coding

Comparing Different Machine Learning Algorithms in Python for Classification (FREE)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.  

Google –> SETScholars