PostgreSQL tutorial for Beginners – PostgreSQL – ALIAS Syntax

PostgreSQL – ALIAS Syntax

 

You can rename a table or a column temporarily by giving another name, which is known as ALIAS. The use of table aliases means to rename a table in a particular PostgreSQL statement. Renaming is a temporary change and the actual table name does not change in the database.

The column aliases are used to rename a table’s columns for the purpose of a particular PostgreSQL query.

Syntax

The basic syntax of table alias is as follows −

SELECT column1, column2....
FROM table_name AS alias_name
WHERE [condition];

The basic syntax of column alias is as follows −

SELECT column_name AS alias_name
FROM table_name
WHERE [condition];

Example

Consider the following two tables, (a) COMPANY table is as follows −

testdb=# select * from COMPANY;
 id | name  | age | address   | salary
----+-------+-----+-----------+--------
  1 | Paul  |  32 | California|  20000
  2 | Allen |  25 | Texas     |  15000
  3 | Teddy |  23 | Norway    |  20000
  4 | Mark  |  25 | Rich-Mond |  65000
  5 | David |  27 | Texas     |  85000
  6 | Kim   |  22 | South-Hall|  45000
  7 | James |  24 | Houston   |  10000
(7 rows)

(b) Another table is DEPARTMENT as follows −

 id | dept         | emp_id
----+--------------+--------
  1 | IT Billing   |      1
  2 | Engineering  |      2
  3 | Finance      |      7
  4 | Engineering  |      3
  5 | Finance      |      4
  6 | Engineering  |      5
  7 | Finance      |      6
(7 rows)

Now, following is the usage of TABLE ALIAS where we use C and D as aliases for COMPANY and DEPARTMENT tables, respectively −

testdb=# SELECT C.ID, C.NAME, C.AGE, D.DEPT
   FROM COMPANY AS C, DEPARTMENT AS D
   WHERE  C.ID = D.EMP_ID;

The above given PostgreSQL statement will produce the following result −

 id | name  | age |  dept
----+-------+-----+------------
  1 | Paul  |  32 | IT Billing
  2 | Allen |  25 | Engineering
  7 | James |  24 | Finance
  3 | Teddy |  23 | Engineering
  4 | Mark  |  25 | Finance
  5 | David |  27 | Engineering
  6 | Kim   |  22 | Finance
(7 rows)

Let us see an example for the usage of COLUMN ALIAS where COMPANY_ID is an alias of ID column and COMPANY_NAME is an alias of name column −

testdb=# SELECT C.ID AS COMPANY_ID, C.NAME AS COMPANY_NAME, C.AGE, D.DEPT
   FROM COMPANY AS C, DEPARTMENT AS D
   WHERE  C.ID = D.EMP_ID;

The above given PostgreSQL statement will produce the following result −

 company_id | company_name | age | dept
------------+--------------+-----+------------
      1     | Paul         |  32 | IT Billing
      2     | Allen        |  25 | Engineering
      7     | James        |  24 | Finance
      3     | Teddy        |  23 | Engineering
      4     | Mark         |  25 | Finance
      5     | David        |  27 | Engineering
      6     | Kim          |  22 | Finance
(7 rows)

 

Python Example for Beginners

Two Machine Learning Fields

There are two sides to machine learning:

  • Practical Machine Learning:This is about querying databases, cleaning data, writing scripts to transform data and gluing algorithm and libraries together and writing custom code to squeeze reliable answers from data to satisfy difficult and ill defined questions. It’s the mess of reality.
  • Theoretical Machine Learning: This is about math and abstraction and idealized scenarios and limits and beauty and informing what is possible. It is a whole lot neater and cleaner and removed from the mess of reality.

Data Science Resources: Data Science Recipes and Applied Machine Learning Recipes

Introduction to Applied Machine Learning & Data Science for Beginners, Business Analysts, Students, Researchers and Freelancers with Python & R Codes @ Western Australian Center for Applied Machine Learning & Data Science (WACAMLDS) !!!

Latest end-to-end Learn by Coding Recipes in Project-Based Learning:

Applied Statistics with R for Beginners and Business Professionals

Data Science and Machine Learning Projects in Python: Tabular Data Analytics

Data Science and Machine Learning Projects in R: Tabular Data Analytics

Python Machine Learning & Data Science Recipes: Learn by Coding

R Machine Learning & Data Science Recipes: Learn by Coding

Comparing Different Machine Learning Algorithms in Python for Classification (FREE)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.  

Google –> SETScholars