Learn Keras by Example – Preprocessing Data For Neural Networks

Hits: 8

Preprocessing Data For Neural Networks

Typically, a neural network’s parameters are initialized (i.e. created) as small random numbers. Neural networks often behave poorly when the feature values much larger than parameter values. Furthermore, since an observation’s feature values will are combined as they pass through individual units, it is important that all features have the same scale.

For these reasons, it is best practice (although not always necessary, for example when we have all binary features) to standardize each feature such that the feature’s values have the mean of 0 and the standard deviation of 1. This can be easily accomplished using scikit-learn’s StandardScaler.

Preliminaries


/* Load libraries */
from sklearn import preprocessing
import numpy as np

Create Feature Data


/* Create feature */
features = np.array([[-100.1, 3240.1], 
                     [-200.2, -234.1], 
                     [5000.5, 150.1], 
                     [6000.6, -125.1], 
                     [9000.9, -673.1]])

Standardize Feature Data


/* Create scaler */
scaler = preprocessing.StandardScaler()

/* Transform the feature */
features_standardized = scaler.fit_transform(features)

Show Standardized Features


/* Show feature */
features_standardized
array([[-1.12541308,  1.96429418],
       [-1.15329466, -0.50068741],
       [ 0.29529406, -0.22809346],
       [ 0.57385917, -0.42335076],
       [ 1.40955451, -0.81216255]])

Show Standardized Features Summary Statistics


/* Print mean and standard deviation */
print('Mean:', round(features_standardized[:,0].mean()))
print('Standard deviation:', features_standardized[:,0].std())

Mean: 0.0
Standard deviation: 1.0

 

Python Example for Beginners

Two Machine Learning Fields

There are two sides to machine learning:

  • Practical Machine Learning:This is about querying databases, cleaning data, writing scripts to transform data and gluing algorithm and libraries together and writing custom code to squeeze reliable answers from data to satisfy difficult and ill defined questions. It’s the mess of reality.
  • Theoretical Machine Learning: This is about math and abstraction and idealized scenarios and limits and beauty and informing what is possible. It is a whole lot neater and cleaner and removed from the mess of reality.

Data Science Resources: Data Science Recipes and Applied Machine Learning Recipes

Introduction to Applied Machine Learning & Data Science for Beginners, Business Analysts, Students, Researchers and Freelancers with Python & R Codes @ Western Australian Center for Applied Machine Learning & Data Science (WACAMLDS) !!!

Latest end-to-end Learn by Coding Recipes in Project-Based Learning:

Applied Statistics with R for Beginners and Business Professionals

Data Science and Machine Learning Projects in Python: Tabular Data Analytics

Data Science and Machine Learning Projects in R: Tabular Data Analytics

Python Machine Learning & Data Science Recipes: Learn by Coding

R Machine Learning & Data Science Recipes: Learn by Coding

Comparing Different Machine Learning Algorithms in Python for Classification (FREE)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.  

Google –> SETScholars

A list of Python, R and SQL Codes for Applied Machine Learning and Data  Science at https://setscholars.net/Learn by Coding Categories:

  1. Classification: https://setscholars.net/category/classification/
  2. Data Analytics: https://setscholars.net/category/data-analytics/
  3. Data Science: https://setscholars.net/category/data-science/
  4. Data Visualisation: https://setscholars.net/category/data-visualisation/
  5. Machine Learning Recipe: https://setscholars.net/category/machine-learning-recipe/
  6. Pandas: https://setscholars.net/category/pandas/
  7. Python: https://setscholars.net/category/python/
  8. SKLEARN: https://setscholars.net/category/sklearn/
  9. Supervised Learning: https://setscholars.net/category/supervised-learning/
  10. Tabular Data Analytics: https://setscholars.net/category/tabular-data-analytics/
  11. End-to-End Data Science Recipes: https://setscholars.net/category/a-star-data-science-recipe/
  12. Applied Statistics: https://setscholars.net/category/applied-statistics/
  13. Bagging Ensemble: https://setscholars.net/category/bagging-ensemble/
  14. Boosting Ensemble: https://setscholars.net/category/boosting-ensemble/
  15. CatBoost: https://setscholars.net/category/catboost/
  16. Clustering: https://setscholars.net/category/clustering/
  17. Data Analytics: https://setscholars.net/category/data-analytics/
  18. Data Science: https://setscholars.net/category/data-science/
  19. Data Visualisation: https://setscholars.net/category/data-visualisation/
  20. Decision Tree: https://setscholars.net/category/decision-tree/
  21. LightGBM: https://setscholars.net/category/lightgbm/
  22. Machine Learning Recipe: https://setscholars.net/category/machine-learning-recipe/
  23. Multi-Class Classification: https://setscholars.net/category/multi-class-classification/
  24. Neural Networks: https://setscholars.net/category/neural-networks/
  25. Python Machine Learning: https://setscholars.net/category/python-machine-learning/
  26. Python Machine Learning Crash Course: https://setscholars.net/category/python-machine-learning-crash-course/
  27. R Classification: https://setscholars.net/category/r-classification/
  28. R for Beginners: https://setscholars.net/category/r-for-beginners/
  29. R for Business Analytics: https://setscholars.net/category/r-for-business-analytics/
  30. R for Data Science: https://setscholars.net/category/r-for-data-science/
  31. R for Data Visualisation: https://setscholars.net/category/r-for-data-visualisation/
  32. R for Excel Users: https://setscholars.net/category/r-for-excel-users/
  33. R Machine Learning: https://setscholars.net/category/r-machine-learning/
  34. R Machine Learning Crash Course: https://setscholars.net/category/r-machine-learning-crash-course/
  35. R Regression: https://setscholars.net/category/r-regression/
  36. Regression: https://setscholars.net/category/regression/
  37. XGBOOST: https://setscholars.net/category/xgboost/
  38. Excel examples for beginners: https://setscholars.net/category/excel-examples-for-beginners/
  39. C Programming tutorials & examples: https://setscholars.net/category/c-programming-tutorials/
  40. Javascript tutorials & examples: https://setscholars.net/category/javascript-tutorials-and-examples/
  41. Python tutorials & examples: https://setscholars.net/category/python-tutorials/
  42. R tutorials & examples: https://setscholars.net/category/r-for-beginners/
  43. SQL tutorials & examples: https://setscholars.net/category/sql-tutorials-for-business-analyst/

 

( FREE downloadable Mathematics Worksheet for Kids )