Learn Keras by Example – How to Build LSTM Recurrent Neural Network

Hits: 38

LSTM Recurrent Neural Network

Oftentimes we have text data that we want to classify. While it is possible to use a type of convolutional network, we are going to focus on a more popular option: the recurrent neural network. The key feature of recurrent neural networks is that information loops back in the network. This gives recurrent neural networks a type of memory it can use to better understand sequential data. A popular choice type of recurrent neural network is the long short-term memory (LSTM) network which allows for information to loop backwards in the network.

Preliminaries


/* Load libraries */
import numpy as np
from keras.datasets import imdb
from keras.preprocessing import sequence
from keras import models
from keras import layers

/* Set random seed */
np.random.seed(0)
Using TensorFlow backend.

Load Dataset On Movie Review Text


/* Set the number of features we want */
number_of_features = 1000

/* Load data and target vector from movie review data */
(train_data, train_target), (test_data, test_target) = imdb.load_data(num_words=number_of_features)

/* Use padding or truncation to make each observation have 400 features */
train_features = sequence.pad_sequences(train_data, maxlen=400)
test_features = sequence.pad_sequences(test_data, maxlen=400)

View First Observation’s Raw Data


/* View first observation */
print(train_data[0])
[1, 14, 22, 16, 43, 530, 973, 2, 2, 65, 458, 2, 66, 2, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112, 50, 670, 2, 9, 35, 480, 284, 5, 150, 4, 172, 112, 167, 2, 336, 385, 39, 4, 172, 2, 2, 17, 546, 38, 13, 447, 4, 192, 50, 16, 6, 147, 2, 19, 14, 22, 4, 2, 2, 469, 4, 22, 71, 87, 12, 16, 43, 530, 38, 76, 15, 13, 2, 4, 22, 17, 515, 17, 12, 16, 626, 18, 2, 5, 62, 386, 12, 8, 316, 8, 106, 5, 4, 2, 2, 16, 480, 66, 2, 33, 4, 130, 12, 16, 38, 619, 5, 25, 124, 51, 36, 135, 48, 25, 2, 33, 6, 22, 12, 215, 28, 77, 52, 5, 14, 407, 16, 82, 2, 8, 4, 107, 117, 2, 15, 256, 4, 2, 7, 2, 5, 723, 36, 71, 43, 530, 476, 26, 400, 317, 46, 7, 4, 2, 2, 13, 104, 88, 4, 381, 15, 297, 98, 32, 2, 56, 26, 141, 6, 194, 2, 18, 4, 226, 22, 21, 134, 476, 26, 480, 5, 144, 30, 2, 18, 51, 36, 28, 224, 92, 25, 104, 4, 226, 65, 16, 38, 2, 88, 12, 16, 283, 5, 16, 2, 113, 103, 32, 15, 16, 2, 19, 178, 32]

View First Observation’s Feature Data


/* View first observation */
test_features[0]
array([  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         0,   0,   0,   1,  89,  27,   2,   2,  17, 199, 132,   5,   2,
        16,   2,  24,   8, 760,   4,   2,   7,   4,  22,   2,   2,  16,
         2,  17,   2,   7,   2,   2,   9,   4,   2,   8,  14, 991,  13,
       877,  38,  19,  27, 239,  13, 100, 235,  61, 483,   2,   4,   7,
         4,  20, 131,   2,  72,   8,  14, 251,  27,   2,   7, 308,  16,
       735,   2,  17,  29, 144,  28,  77,   2,  18,  12], dtype=int32)

Create LSTM Neural Network Architecture


/* Start neural network */
network = models.Sequential()

/* Add an embedding layer */
network.add(layers.Embedding(input_dim=number_of_features, output_dim=128))

/* Add a long short-term memory layer with 128 units */
network.add(layers.LSTM(units=128))

/* Add fully connected layer with a sigmoid activation function */
network.add(layers.Dense(units=1, activation='sigmoid'))

Compule LSTM Neural Network Architecture


/* Compile neural network */
network.compile(loss='binary_crossentropy', # Cross-entropy
                optimizer='Adam', # Adam optimization
                metrics=['accuracy']) # Accuracy performance metric

Train LSTM Neural Network Architecture


/* Train neural network */
history = network.fit(train_features, # Features
                      train_target, # Target
                      epochs=3, # Number of epochs
                      verbose=0, # Do not print description after each epoch
                      batch_size=1000, # Number of observations per batch
                      validation_data=(test_features, test_target)) # Data for evaluation

 

Python Example for Beginners

Two Machine Learning Fields

There are two sides to machine learning:

  • Practical Machine Learning:This is about querying databases, cleaning data, writing scripts to transform data and gluing algorithm and libraries together and writing custom code to squeeze reliable answers from data to satisfy difficult and ill defined questions. It’s the mess of reality.
  • Theoretical Machine Learning: This is about math and abstraction and idealized scenarios and limits and beauty and informing what is possible. It is a whole lot neater and cleaner and removed from the mess of reality.

Data Science Resources: Data Science Recipes and Applied Machine Learning Recipes

Introduction to Applied Machine Learning & Data Science for Beginners, Business Analysts, Students, Researchers and Freelancers with Python & R Codes @ Western Australian Center for Applied Machine Learning & Data Science (WACAMLDS) !!!

Latest end-to-end Learn by Coding Recipes in Project-Based Learning:

Applied Statistics with R for Beginners and Business Professionals

Data Science and Machine Learning Projects in Python: Tabular Data Analytics

Data Science and Machine Learning Projects in R: Tabular Data Analytics

Python Machine Learning & Data Science Recipes: Learn by Coding

R Machine Learning & Data Science Recipes: Learn by Coding

Comparing Different Machine Learning Algorithms in Python for Classification (FREE)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.  

Google –> SETScholars

A list of Python, R and SQL Codes for Applied Machine Learning and Data  Science at https://setscholars.net/Learn by Coding Categories:

  1. Classification: https://setscholars.net/category/classification/
  2. Data Analytics: https://setscholars.net/category/data-analytics/
  3. Data Science: https://setscholars.net/category/data-science/
  4. Data Visualisation: https://setscholars.net/category/data-visualisation/
  5. Machine Learning Recipe: https://setscholars.net/category/machine-learning-recipe/
  6. Pandas: https://setscholars.net/category/pandas/
  7. Python: https://setscholars.net/category/python/
  8. SKLEARN: https://setscholars.net/category/sklearn/
  9. Supervised Learning: https://setscholars.net/category/supervised-learning/
  10. Tabular Data Analytics: https://setscholars.net/category/tabular-data-analytics/
  11. End-to-End Data Science Recipes: https://setscholars.net/category/a-star-data-science-recipe/
  12. Applied Statistics: https://setscholars.net/category/applied-statistics/
  13. Bagging Ensemble: https://setscholars.net/category/bagging-ensemble/
  14. Boosting Ensemble: https://setscholars.net/category/boosting-ensemble/
  15. CatBoost: https://setscholars.net/category/catboost/
  16. Clustering: https://setscholars.net/category/clustering/
  17. Data Analytics: https://setscholars.net/category/data-analytics/
  18. Data Science: https://setscholars.net/category/data-science/
  19. Data Visualisation: https://setscholars.net/category/data-visualisation/
  20. Decision Tree: https://setscholars.net/category/decision-tree/
  21. LightGBM: https://setscholars.net/category/lightgbm/
  22. Machine Learning Recipe: https://setscholars.net/category/machine-learning-recipe/
  23. Multi-Class Classification: https://setscholars.net/category/multi-class-classification/
  24. Neural Networks: https://setscholars.net/category/neural-networks/
  25. Python Machine Learning: https://setscholars.net/category/python-machine-learning/
  26. Python Machine Learning Crash Course: https://setscholars.net/category/python-machine-learning-crash-course/
  27. R Classification: https://setscholars.net/category/r-classification/
  28. R for Beginners: https://setscholars.net/category/r-for-beginners/
  29. R for Business Analytics: https://setscholars.net/category/r-for-business-analytics/
  30. R for Data Science: https://setscholars.net/category/r-for-data-science/
  31. R for Data Visualisation: https://setscholars.net/category/r-for-data-visualisation/
  32. R for Excel Users: https://setscholars.net/category/r-for-excel-users/
  33. R Machine Learning: https://setscholars.net/category/r-machine-learning/
  34. R Machine Learning Crash Course: https://setscholars.net/category/r-machine-learning-crash-course/
  35. R Regression: https://setscholars.net/category/r-regression/
  36. Regression: https://setscholars.net/category/regression/
  37. XGBOOST: https://setscholars.net/category/xgboost/
  38. Excel examples for beginners: https://setscholars.net/category/excel-examples-for-beginners/
  39. C Programming tutorials & examples: https://setscholars.net/category/c-programming-tutorials/
  40. Javascript tutorials & examples: https://setscholars.net/category/javascript-tutorials-and-examples/
  41. Python tutorials & examples: https://setscholars.net/category/python-tutorials/
  42. R tutorials & examples: https://setscholars.net/category/r-for-beginners/
  43. SQL tutorials & examples: https://setscholars.net/category/sql-tutorials-for-business-analyst/

 

( FREE downloadable Mathematics Worksheet for Kids )