Learn Java by Example: Java Program to Check Whether a Number is Even or Odd

Hits: 13

Java Program to Check Whether a Number is Even or Odd

In this program, you’ll learn to check if a number entered by an user is even or odd. This will be done using if…else statement and ternary operator in Java.

 


Example 1: Check whether a number is even or odd using if…else statement


import java.util.Scanner;

public class EvenOdd{

    public static void main(String[] args){

        Scanner reader = new Scanner(System.in);

        System.out.print("Enter a number: ");
        int num = reader.nextInt();

        if(num % 2 == 0)
            System.out.println(num + " is even");
        else
            System.out.println(num + " is odd");
    }
}

Output

Enter a number: 12
12 is even

In the above program, a Scanner object, reader is created to read a number from the user’s keyboard. The entered number is then stored in a variable num.

Now, to check whether num is even or odd, we calculate its remainder using % operator and check if it is divisible by 2 or not.

For this, we use if...else statement in Java. If num is divisible by 2, we print num is even. Else, we print num is odd.

We can also check if num is even or odd by using ternary operator in Java.


Example 2: Check whether a number is even or odd using ternary operator


import java.util.Scanner;

public class EvenOdd{

    public static void main(String[] args){

        Scanner reader = new Scanner(System.in);

        System.out.print("Enter a number: ");
        int num = reader.nextInt();

        String evenOdd = (num % 2 == 0) ? "even" : "odd";

        System.out.println(num + " is " + evenOdd);

    }
}

 

Output

Enter a number: 13
13 is odd

In the above program, we’ve replaced if...else statement with ternary operator (? :).

Here, if num is divisible by 2,"even" is returned. Else, "odd" is returned. The returned value is saved in a string variable evenOdd.

Then, the result is printed on the screen using string concatenation.

 

 

Python Example for Beginners

Two Machine Learning Fields

There are two sides to machine learning:

  • Practical Machine Learning:This is about querying databases, cleaning data, writing scripts to transform data and gluing algorithm and libraries together and writing custom code to squeeze reliable answers from data to satisfy difficult and ill defined questions. It’s the mess of reality.
  • Theoretical Machine Learning: This is about math and abstraction and idealized scenarios and limits and beauty and informing what is possible. It is a whole lot neater and cleaner and removed from the mess of reality.

Data Science Resources: Data Science Recipes and Applied Machine Learning Recipes

Introduction to Applied Machine Learning & Data Science for Beginners, Business Analysts, Students, Researchers and Freelancers with Python & R Codes @ Western Australian Center for Applied Machine Learning & Data Science (WACAMLDS) !!!

Latest end-to-end Learn by Coding Recipes in Project-Based Learning:

Applied Statistics with R for Beginners and Business Professionals

Data Science and Machine Learning Projects in Python: Tabular Data Analytics

Data Science and Machine Learning Projects in R: Tabular Data Analytics

Python Machine Learning & Data Science Recipes: Learn by Coding

R Machine Learning & Data Science Recipes: Learn by Coding

Comparing Different Machine Learning Algorithms in Python for Classification (FREE)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.