In-Depth Analysis of Seattle’s Monthly Weather Trends Using Seaborn
Introduction
Weather data analysis often requires advanced visualization techniques to discern patterns, especially when dealing with datasets spanning multiple months or years. This article delves into the detailed analysis of Seattle’s weather, focusing on the daily average temperature throughout the year. We will use Python’s Seaborn library, a powerful visualization tool, to showcase the monthly temperature variations in Seattle in an intuitive manner.
Data Preparation
First, let’s gather and prepare our dataset. For this analysis, we will be using the 2016 weather dataset for Seattle, which is readily available from Plotly’s GitHub repository.
Setting Up the Environment:
```python
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Setting the theme for the plots
sns.set_theme(style="white", rc={"axes.facecolor": (0, 0, 0, 0)})
```
Loading and Structuring the Data:
```python
# Loading the dataset
temp = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2016-weather-data-seattle.csv')
# Extracting the month from the date and mapping it to its textual representation
month_names = {
1: 'January', 2: 'February', 3: 'March', 4: 'April',
5: 'May', 6: 'June', 7: 'July', 8: 'August',
9: 'September', 10: 'October', 11: 'November', 12: 'December'
}
temp['month'] = pd.to_datetime(temp['Date']).dt.month.map(month_names)
# Computing the monthly mean temperature
monthly_means = temp.groupby('month')['Mean_TemperatureC'].mean()
temp['mean_month'] = temp['month'].map(monthly_means)
```
Visualizing the Data
Now that our data is structured appropriately, let’s proceed with the visualization. We aim to depict the daily average temperature for each month using a series of density plots.
Crafting the Visualization:
```python
# Defining a color palette
palette = sns.color_palette('coolwarm', n_colors=12)
# Creating a FacetGrid to visualize data for each month
g = sns.FacetGrid(temp, row='month', hue='mean_month', aspect=15, height=0.75, palette=palette)
# Adding density plots for each month
g.map_dataframe(sns.kdeplot, x='Mean_TemperatureC', fill=True, alpha=1, linewidth=1.5)
# Overlaying the plots with white contour
g.map_dataframe(sns.kdeplot, x='Mean_TemperatureC', color="w", lw=2)
# Adding a horizontal line for reference
g.map(plt.axhline, y=0, lw=2, clip_on=False)
# Annotating the plots with month names
for i, ax in enumerate(g.axes.flat):
ax.text(-15, 0.02, month_names[i+1], fontweight='bold', fontsize=15, color=ax.lines[-1].get_color())
# Adjusting the layout and aesthetics
g.fig.subplots_adjust(hspace=-0.3)
g.set_titles("")
g.set(yticks=[])
g.despine(bottom=True, left=True)
# Setting x-axis labels
ax = g.axes[-1, 0]
ax.set_xticklabels(ax.get_xticks(), fontsize=15, fontweight='bold')
plt.xlabel('Temperature (°C)', fontweight='bold', fontsize=15)
# Adding a title
g.fig.suptitle('Daily Average Temperatures in Seattle (2016)', fontsize=20, fontweight='bold', ha='right')
# Displaying the visualization
plt.show()
```
Key Takeaways and Elaborated Prompts
1. **Interpreting Density Plots**: How do density plots provide insights into the distribution of temperatures?
2. **Monthly Variation**: Which months in Seattle have the most variation in temperature, and why?
3. **Understanding Aesthetics**: How does the choice of color palette affect data interpretation?
4. **Data Availability**: How does the availability of daily temperature data influence the quality of insights?
5. **Comparison with Other Cities**: How might Seattle’s temperature trends differ from other US cities?
6. **Seasonal Insights**: Can you discern the seasons from the density plots? Which months signify the transition between seasons?
7. **Extending the Analysis**: How can this approach be extended to analyze other weather parameters like humidity or rainfall?
8. **Handling Missing Data**: How would missing data points affect our visualization?
9. **Optimizing Visualization**: How can we further optimize the visualization for presentations or publications?
10. **Interactivity**: How can we make these visualizations interactive for more in-depth exploration?
11. **Historical Analysis**: How might the inclusion of historical data enhance our understanding of weather trends?
12. **Forecasting**: Based on the given data, can we forecast future temperatures?
13. **Incorporating External Events**: How might external events, like forest fires or volcanic eruptions, influence temperature readings?
14. **Dealing with Outliers**: How can outliers be identified and handled in our visualization?
15. **Broader Implications**: How can insights from this analysis inform sectors like agriculture, tourism, or urban planning in Seattle?
Conclusion
Analyzing and visualizing Seattle’s weather trends using Seaborn provides invaluable insights into the city’s climate patterns. Such visualizations not only enhance our understanding of historical data but also pave the way for predictive analytics, crucial for sectors dependent on weather forecasts. Whether you’re a data enthusiast, researcher, or professional, mastering the art of visualization with tools like Seaborn is an indispensable skill in the modern data-driven world.
Complete Code
```python
# Import the required libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Set the visual theme of your plots
sns.set_theme(style="white", rc={"axes.facecolor": (0, 0, 0, 0)})
# Load and organize the dataset
temp = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2016-weather-data-seattle.csv')
month_names = {1: 'January', 2: 'February', 3: 'March', 4: 'April',
5: 'May', 6: 'June', 7: 'July', 8: 'August',
9: 'September', 10: 'October', 11: 'November', 12: 'December'}
temp['month'] = pd.to_datetime(temp['Date']).dt.month.map(month_names)
monthly_means = temp.groupby('month')['Mean_TemperatureC'].mean()
temp['mean_month'] = temp['month'].map(monthly_means)
# Define the color palette
palette = sns.color_palette('coolwarm', n_colors=12)
# Create and configure the FacetGrid
g = sns.FacetGrid(temp, row='month', hue='mean_month', aspect=15, height=0.75, palette=palette)
g.map_dataframe(sns.kdeplot, x='Mean_TemperatureC', fill=True, alpha=1, linewidth=1.5)
g.map_dataframe(sns.kdeplot, x='Mean_TemperatureC', color="w", lw=2)
g.map(plt.axhline, y=0, lw=2, clip_on=False)
# Add month names as annotations
for i, ax in enumerate(g.axes.flat):
ax.text(-15, 0.02, month_names[i+1], fontweight='bold', fontsize=15, color=ax.lines[-1].get_color())
# Adjust the layout and display the plot
g.fig.subplots_adjust(hspace=-0.3)
g.set_titles("")
g.set(yticks=[])
g.despine(bottom=True, left=True)
ax = g.axes[-1, 0]
ax.set_xticklabels(ax.get_xticks(), fontsize=15, fontweight='bold')
plt.xlabel('Temperature (°C)', fontweight='bold', fontsize=15)
g.fig.suptitle('Daily Average Temperatures in Seattle (2016)', fontsize=20, fontweight='bold', ha='right')
# Finally, display the visualization
plt.show()
```
Essential Gigs
For only $50, Nilimesh will develop time series forecasting model for you using python or r. | Note: please contact me…www.fiverr.com
For only $50, Nilimesh will do your data analytics and econometrics projects in python. | Note: please contact me…www.fiverr.com
For only $50, Nilimesh will do your machine learning and data science projects in python. | Note: please contact me…www.fiverr.com
For only $50, Nilimesh will do your gis and spatial programming projects in python. | Note: please contact me before…www.fiverr.com