How to setup a CNN model for imdb sentiment analysis in Keras

Hits: 333

How to setup a CNN model for imdb sentiment analysis in Keras



Sentiment analysis is the process of determining the emotional tone of a piece of text, such as a review or a tweet. A Convolutional Neural Network (CNN) is a type of neural network that can be used for sentiment analysis, and Keras is a high-level neural networks API that allows for easy and fast prototyping, and it is written in Python.

The first step in setting up a CNN model for sentiment analysis using Keras is to prepare the dataset. For sentiment analysis, we typically use a dataset of text samples, such as movie reviews, along with their corresponding labels indicating whether the review is positive or negative. The dataset should be divided into a training set and a test set.

Next, we need to preprocess the text data. This involves cleaning the text by removing special characters, stop words, and punctuations. It also involves tokenizing the text into individual words and creating a vocabulary of all the unique words in the dataset. We can also convert the words to numerical values using one-hot encoding or word embeddings like word2vec or GloVe.

Once the text data is preprocessed, we can build the CNN model. Keras provides a built-in function for creating a sequential model, which is the type of model used for CNNs. We can add layers to this model, such as an input layer, convolutional layers, pooling layers, and an output layer. The input layer receives the preprocessed text data, and the convolutional and pooling layers process the data and extract features. The output layer produces the sentiment prediction.

Convolutional layers are the key element of CNN. They scan the input data with a small window called kernel and apply the same set of weights to all the elements within the kernel, producing an output map. Pooling layers are used to down-sample the output maps from the convolutional layers, reducing the dimensionality of the data.

After building the model, we need to compile it. This involves specifying the optimizer and loss function that will be used during training. The optimizer is responsible for updating the model’s weights during training, and the loss function is used to measure the model’s performance.

Finally, we can train the model on our dataset. This is done by feeding the model text samples from the training set and adjusting the weights based on the performance of the model. This process is repeated for a set number of iterations, known as epochs, until the model reaches a satisfactory level of performance.

Once the model is trained, we can use it to make predictions on new text samples. This can be done by calling the predict function on the model and passing in the text we want to classify.

In summary, setting up a CNN model for sentiment analysis using Keras involves preparing a dataset of text samples, preprocessing the text data, building the CNN model, compiling the model, training it on the dataset, and making predictions with new text samples. Convolutional and pooling layers are key elements of the model, they scan the input data and extract features, reducing the dimensionality of the data.


In this Applied Machine Learning & Data Science Recipe (Jupyter Notebook), the reader will find the practical use of applied machine learning and data science in Python programming:How to setup a CNN model for imdb sentiment analysis in Keras.

What should I learn from this recipe?

You will learn:


How to setup a CNN model for imdb sentiment analysis in Keras:

Personal Career & Learning Guide for Data Analyst, Data Engineer and Data Scientist

Applied Machine Learning & Data Science Projects and Coding Recipes for Beginners

A list of FREE programming examples together with eTutorials & eBooks @ SETScholars

95% Discount on “Projects & Recipes, tutorials, ebooks”

Projects and Coding Recipes, eTutorials and eBooks: The best All-in-One resources for Data Analyst, Data Scientist, Machine Learning Engineer and Software Developer

Topics included: Classification, Clustering, Regression, Forecasting, Algorithms, Data Structures, Data Analytics & Data Science, Deep Learning, Machine Learning, Programming Languages and Software Tools & Packages.
(Discount is valid for limited time only)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.

Learn by Coding: v-Tutorials on Applied Machine Learning and Data Science for Beginners

There are 2000+ End-to-End Python & R Notebooks are available to build Professional Portfolio as a Data Scientist and/or Machine Learning Specialist. All Notebooks are only $29.95. We would like to request you to have a look at the website for FREE the end-to-end notebooks, and then decide whether you would like to purchase or not.

Please do not waste your valuable time by watching videos, rather use end-to-end (Python and R) recipes from Professional Data Scientists to practice coding, and land the most demandable jobs in the fields of Predictive analytics & AI (Machine Learning and Data Science).

The objective is to guide the developers & analysts to “Learn how to Code” for Applied AI using end-to-end coding solutions, and unlock the world of opportunities!


How to setup a Simple RNN model for imdb sentiment analysis in Keras

How to setup a LSTM (RNN) model for imdb sentiment analysis in Keras

How to setup a GRU (RNN) model for imdb sentiment analysis in Keras