How to reduce dimensionality on Sparse Matrix in Python

Hits: 48

How to reduce dimensionality on Sparse Matrix in Python

One way to reduce the dimensionality of a sparse matrix in Python is by using the Singular Value Decomposition (SVD) technique. SVD is a matrix factorization method that can be used to decompose a matrix into three separate matrices: a matrix of singular values, a left singular matrix, and a right singular matrix. One of the main benefits of SVD is that it can be used to reduce the dimensionality of a matrix while preserving as much of the original information as possible.

Here’s an example of how you can use the SVD technique to reduce the dimensionality of a sparse matrix using the scipy library:

from scipy.sparse import csr_matrix
from scipy.linalg import svd


// Create a sparse matrix
matrix = csr_matrix([[1, 0, 0], [0, 2, 0], [0, 0, 3]])


// Perform SVD
U, s, V = svd(matrix, full_matrices=False)


// Reduce the dimensionality by keeping only the first 2 singular values
reduced_matrix = U[:, :2] @ np.diag(s[:2]) @ V[:2, :]

In this example, we first create a sparse matrix using the csr_matrix function from the scipy.sparse library, then perform the SVD decomposition using the svd function from the scipy.linalg library. The resulting matrices are the U, s, V matrices and we can reduce the dimensionality by keeping only the first k values of s and reducing the U and V matrices accordingly.

It’s also worth mentioning that there are other dimensionality reduction techniques that can be used to reduce sparse matrix like PCA (Principal Component Analysis), LLE (Locally Linear Embedding), t-SNE (t-Distributed Stochastic Neighbor Embedding) etc. But, SVD is one of the most common and easy to understand technique for sparse matrix.

In simple words, Dimensionality reduction is the process of reducing the number of random variables by obtaining a set of principal variables. One of the ways to reduce the dimensionality of a sparse matrix is by using Singular Value Decomposition (SVD) technique, which can decompose the sparse matrix into three separate matrices: a matrix of singular values, a left singular matrix, and a right singular matrix. By keeping only the first k values of the s matrix and reducing the U and V matrices accordingly, the dimensionality of the matrix can be reduced while preserving as much of the original information as possible.

 

In this Learn through Codes example, you will learn: How to reduce dimensionality on Sparse Matrix in Python.



 

Personal Career & Learning Guide for Data Analyst, Data Engineer and Data Scientist

Applied Machine Learning & Data Science Projects and Coding Recipes for Beginners

A list of FREE programming examples together with eTutorials & eBooks @ SETScholars

95% Discount on “Projects & Recipes, tutorials, ebooks”

Projects and Coding Recipes, eTutorials and eBooks: The best All-in-One resources for Data Analyst, Data Scientist, Machine Learning Engineer and Software Developer

Topics included: Classification, Clustering, Regression, Forecasting, Algorithms, Data Structures, Data Analytics & Data Science, Deep Learning, Machine Learning, Programming Languages and Software Tools & Packages.
(Discount is valid for limited time only)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.

Learn by Coding: v-Tutorials on Applied Machine Learning and Data Science for Beginners