How to check model’s f1-score using Cross Validation in Python

Hits: 330

How to check model’s f1-score using Cross Validation in Python

When building a machine learning model, it’s important to evaluate its performance using various metrics. One of them is the F1-score, which is the harmonic mean of precision and recall.

Cross-validation is a method that allows to test the model’s F1-score by dividing the data into several parts, training the model on some of the parts and evaluating it on the others.

In Python, the library scikit-learn provides an easy way to perform cross-validation using the cross_val_score function and specifying ‘f1’ as a scoring metric .

The first step is to import the library and load the dataset into a pandas dataframe. Then, create an instance of the model you want to evaluate.

After that, you can use the cross_val_score function to evaluate the model’s F1-score. The function takes the model, the dataset, and the number of folds (parts) you want to divide the data into. The function returns an array of scores, where each score represents the F1-score of the model on one fold.

It’s also worth mentioning that, you can use ‘cv’ parameter that takes the number of splits you would like to make, or an iterable that you can use to define the splits.

Finally, you can use the mean() method to calculate the average F1-score of the model, this gives an overall measure of the model’s performance.

In summary, cross-validation and F1-score are powerful tools for evaluating the performance of a machine learning model. By using the cross_val_score function in scikit-learn and specifying ‘f1’ as a scoring metric, it’s easy to perform cross-validation and check the F1-score of the model in Python, making it a valuable tool for data scientists and machine learning practitioners.


In this Learn through Codes example, you will learn: How to check model’s f1-score using Cross Validation in Python.


Personal Career & Learning Guide for Data Analyst, Data Engineer and Data Scientist

Applied Machine Learning & Data Science Projects and Coding Recipes for Beginners

A list of FREE programming examples together with eTutorials & eBooks @ SETScholars

95% Discount on “Projects & Recipes, tutorials, ebooks”

Projects and Coding Recipes, eTutorials and eBooks: The best All-in-One resources for Data Analyst, Data Scientist, Machine Learning Engineer and Software Developer

Topics included: Classification, Clustering, Regression, Forecasting, Algorithms, Data Structures, Data Analytics & Data Science, Deep Learning, Machine Learning, Programming Languages and Software Tools & Packages.
(Discount is valid for limited time only)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.

Learn by Coding: v-Tutorials on Applied Machine Learning and Data Science for Beginners