# Geolocate A City And Country

This tutorial creates a function that attempts to take a city and country and return its latitude and longitude. But when the city is unavailable (which is often be the case), the returns the latitude and longitude of the center of the country.

## Preliminaries

``````
from geopy.geocoders import Nominatim
geolocator = Nominatim()
import numpy as np``````

## Create Geolocation Function

``````def geolocate(city=None, country=None):
'''
Inputs city and country, or just country. Returns the lat/long coordinates of
either the city if possible, if not, then returns lat/long of the center of the country.
'''

/* If the city exists, */
if city != None:
/* Try */
try:
/* To geolocate the city and country */
loc = geolocator.geocode(str(city + ',' + country))
/* And return latitude and longitude */
return (loc.latitude, loc.longitude)
/* Otherwise */
except:
/* Return missing value */
return np.nan
/* If the city doesn't exist */
else:
/* Try */
try:
/* Geolocate the center of the country */
loc = geolocator.geocode(country)
/* And return latitude and longitude  */
return (loc.latitude, loc.longitude)
/* Otherwise */
except:
/* Return missing value */
return np.nan``````

## Geolocate A City And Country

``````/* Geolocate a city and country */
geolocate(city='Austin', country='USA')``````
``````(30.2711286, -97.7436995)
``````

# Special 95% discount

## Two Machine Learning Fields

There are two sides to machine learning:

• Practical Machine Learning:This is about querying databases, cleaning data, writing scripts to transform data and gluing algorithm and libraries together and writing custom code to squeeze reliable answers from data to satisfy difficult and ill defined questions. It’s the mess of reality.
• Theoretical Machine Learning: This is about math and abstraction and idealized scenarios and limits and beauty and informing what is possible. It is a whole lot neater and cleaner and removed from the mess of reality.

Data Science Resources: Data Science Recipes and Applied Machine Learning Recipes

Introduction to Applied Machine Learning & Data Science for Beginners, Business Analysts, Students, Researchers and Freelancers with Python & R Codes @ Western Australian Center for Applied Machine Learning & Data Science (WACAMLDS) !!!

Latest end-to-end Learn by Coding Recipes in Project-Based Learning:

Applied Statistics with R for Beginners and Business Professionals

Data Science and Machine Learning Projects in Python: Tabular Data Analytics

Data Science and Machine Learning Projects in R: Tabular Data Analytics

Python Machine Learning & Data Science Recipes: Learn by Coding

R Machine Learning & Data Science Recipes: Learn by Coding

Comparing Different Machine Learning Algorithms in Python for Classification (FREE)

`Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.  `