Data Wrangling in Python – How to Do Descriptive Statistics For pandas Dataframe

Descriptive Statistics For pandas Dataframe

Import modules


import pandas as pd

Create dataframe

data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 
        'age': [42, 52, 36, 24, 73], 
        'preTestScore': [4, 24, 31, 2, 3],
        'postTestScore': [25, 94, 57, 62, 70]}
df = pd.DataFrame(data, columns = ['name', 'age', 'preTestScore', 'postTestScore'])
df
name age preTestScore postTestScore
0 Jason 42 4 25
1 Molly 52 24 94
2 Tina 36 31 57
3 Jake 24 2 62
4 Amy 73 3 70

5 rows × 4 columns

The sum of all the ages

df['age'].sum()
227

Mean preTestScore

df['preTestScore'].mean()
12.800000000000001

Cumulative sum of preTestScores, moving from the rows from the top

df['preTestScore'].cumsum()
0     4
1    28
2    59
3    61
4    64
Name: preTestScore, dtype: int64

Summary statistics on preTestScore

df['preTestScore'].describe()
count     5.000000
mean     12.800000
std      13.663821
min       2.000000
25%       3.000000
50%       4.000000
75%      24.000000
max      31.000000
Name: preTestScore, dtype: float64

Count the number of non-NA values

df['preTestScore'].count()
5

Minimum value of preTestScore

df['preTestScore'].min()
2

Maximum value of preTestScore

df['preTestScore'].max()
31

Median value of preTestScore

df['preTestScore'].median()
4.0

Sample variance of preTestScore values

df['preTestScore'].var()
186.69999999999999

Sample standard deviation of preTestScore values

df['preTestScore'].std()
13.663820841916802

Skewness of preTestScore values

df['preTestScore'].skew()
0.74334524573267591

Kurtosis of preTestScore values

df['preTestScore'].kurt()
-2.4673543738411525

Correlation Matrix Of Values

df.corr()
age preTestScore postTestScore
age 1.000000 -0.105651 0.328852
preTestScore -0.105651 1.000000 0.378039
postTestScore 0.328852 0.378039 1.000000

3 rows × 3 columns

Covariance Matrix Of Values

df.cov()
age preTestScore postTestScore
age 340.80 -26.65 151.20
preTestScore -26.65 186.70 128.65
postTestScore 151.20 128.65 620.30

3 rows × 3 columns

 

Python Example for Beginners

Two Machine Learning Fields

There are two sides to machine learning:

  • Practical Machine Learning:This is about querying databases, cleaning data, writing scripts to transform data and gluing algorithm and libraries together and writing custom code to squeeze reliable answers from data to satisfy difficult and ill defined questions. It’s the mess of reality.
  • Theoretical Machine Learning: This is about math and abstraction and idealized scenarios and limits and beauty and informing what is possible. It is a whole lot neater and cleaner and removed from the mess of reality.

Data Science Resources: Data Science Recipes and Applied Machine Learning Recipes

Introduction to Applied Machine Learning & Data Science for Beginners, Business Analysts, Students, Researchers and Freelancers with Python & R Codes @ Western Australian Center for Applied Machine Learning & Data Science (WACAMLDS) !!!

Latest end-to-end Learn by Coding Recipes in Project-Based Learning:

Applied Statistics with R for Beginners and Business Professionals

Data Science and Machine Learning Projects in Python: Tabular Data Analytics

Data Science and Machine Learning Projects in R: Tabular Data Analytics

Python Machine Learning & Data Science Recipes: Learn by Coding

R Machine Learning & Data Science Recipes: Learn by Coding

Comparing Different Machine Learning Algorithms in Python for Classification (FREE)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.  

Google –> SETScholars