Apply Operations To Groups In Pandas
Preliminaries
/* import modules */
import pandas as pd
/* Create dataframe */
raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'],
'company': ['1st', '1st', '2nd', '2nd', '1st', '1st', '2nd', '2nd','1st', '1st', '2nd', '2nd'],
'name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'],
'preTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3],
'postTestScore': [25, 94, 57, 62, 70, 25, 94, 57, 62, 70, 62, 70]}
df = pd.DataFrame(raw_data, columns = ['regiment', 'company', 'name', 'preTestScore', 'postTestScore'])
df
regiment | company | name | preTestScore | postTestScore | |
---|---|---|---|---|---|
0 | Nighthawks | 1st | Miller | 4 | 25 |
1 | Nighthawks | 1st | Jacobson | 24 | 94 |
2 | Nighthawks | 2nd | Ali | 31 | 57 |
3 | Nighthawks | 2nd | Milner | 2 | 62 |
4 | Dragoons | 1st | Cooze | 3 | 70 |
5 | Dragoons | 1st | Jacon | 4 | 25 |
6 | Dragoons | 2nd | Ryaner | 24 | 94 |
7 | Dragoons | 2nd | Sone | 31 | 57 |
8 | Scouts | 1st | Sloan | 2 | 62 |
9 | Scouts | 1st | Piger | 3 | 70 |
10 | Scouts | 2nd | Riani | 2 | 62 |
11 | Scouts | 2nd | Ali | 3 | 70 |
/* Create a groupby variable that groups preTestScores by regiment */
groupby_regiment = df['preTestScore'].groupby(df['regiment'])
groupby_regiment
<pandas.core.groupby.SeriesGroupBy object at 0x113ddb550>
“This grouped variable is now a GroupBy object. It has not actually computed anything yet except for some intermediate data about the group key df['key1']
. The idea is that this object has all of the information needed to then apply some operation to each of the groups.” – Python for Data Analysis.
View a grouping
Use list() to show what a grouping looks like
list(df['preTestScore'].groupby(df['regiment']))
[('Dragoons', 4 3
5 4
6 24
7 31
Name: preTestScore, dtype: int64), ('Nighthawks', 0 4
1 24
2 31
3 2
Name: preTestScore, dtype: int64), ('Scouts', 8 2
9 3
10 2
11 3
Name: preTestScore, dtype: int64)]
Descriptive statistics by group
df['preTestScore'].groupby(df['regiment']).describe()
count | mean | std | min | 25% | 50% | 75% | max | |
---|---|---|---|---|---|---|---|---|
regiment | ||||||||
Dragoons | 4.0 | 15.50 | 14.153916 | 3.0 | 3.75 | 14.0 | 25.75 | 31.0 |
Nighthawks | 4.0 | 15.25 | 14.453950 | 2.0 | 3.50 | 14.0 | 25.75 | 31.0 |
Scouts | 4.0 | 2.50 | 0.577350 | 2.0 | 2.00 | 2.5 | 3.00 | 3.0 |
Mean of each regiment’s preTestScore
groupby_regiment.mean()
regiment
Dragoons 15.50
Nighthawks 15.25
Scouts 2.50
Name: preTestScore, dtype: float64
Mean preTestScores grouped by regiment and company
df['preTestScore'].groupby([df['regiment'], df['company']]).mean()
regiment company
Dragoons 1st 3.5
2nd 27.5
Nighthawks 1st 14.0
2nd 16.5
Scouts 1st 2.5
2nd 2.5
Name: preTestScore, dtype: float64
Mean preTestScores grouped by regiment and company without heirarchical indexing
df['preTestScore'].groupby([df['regiment'], df['company']]).mean().unstack()
company | 1st | 2nd |
---|---|---|
regiment | ||
Dragoons | 3.5 | 27.5 |
Nighthawks | 14.0 | 16.5 |
Scouts | 2.5 | 2.5 |
Group the entire dataframe by regiment and company
df.groupby(['regiment', 'company']).mean()
preTestScore | postTestScore | ||
---|---|---|---|
regiment | company | ||
Dragoons | 1st | 3.5 | 47.5 |
2nd | 27.5 | 75.5 | |
Nighthawks | 1st | 14.0 | 59.5 |
2nd | 16.5 | 59.5 | |
Scouts | 1st | 2.5 | 66.0 |
2nd | 2.5 | 66.0 |
Number of observations in each regiment and company
df.groupby(['regiment', 'company']).size()
regiment company
Dragoons 1st 2
2nd 2
Nighthawks 1st 2
2nd 2
Scouts 1st 2
2nd 2
dtype: int64
Iterate an operations over groups
/* Group the dataframe by regiment, and for each regiment, */
for name, group in df.groupby('regiment'):
/* print the name of the regiment */
print(name)
/* print the data of that regiment */
print(group)
Dragoons
regiment company name preTestScore postTestScore
4 Dragoons 1st Cooze 3 70
5 Dragoons 1st Jacon 4 25
6 Dragoons 2nd Ryaner 24 94
7 Dragoons 2nd Sone 31 57
Nighthawks
regiment company name preTestScore postTestScore
0 Nighthawks 1st Miller 4 25
1 Nighthawks 1st Jacobson 24 94
2 Nighthawks 2nd Ali 31 57
3 Nighthawks 2nd Milner 2 62
Scouts
regiment company name preTestScore postTestScore
8 Scouts 1st Sloan 2 62
9 Scouts 1st Piger 3 70
10 Scouts 2nd Riani 2 62
11 Scouts 2nd Ali 3 70
Group by columns
Specifically in this case: group by the data types of the columns (i.e. axis=1) and then use list() to view what that grouping looks like
list(df.groupby(df.dtypes, axis=1))
[(dtype('int64'), preTestScore postTestScore
0 4 25
1 24 94
2 31 57
3 2 62
4 3 70
5 4 25
6 24 94
7 31 57
8 2 62
9 3 70
10 2 62
11 3 70),
(dtype('O'), regiment company name
0 Nighthawks 1st Miller
1 Nighthawks 1st Jacobson
2 Nighthawks 2nd Ali
3 Nighthawks 2nd Milner
4 Dragoons 1st Cooze
5 Dragoons 1st Jacon
6 Dragoons 2nd Ryaner
7 Dragoons 2nd Sone
8 Scouts 1st Sloan
9 Scouts 1st Piger
10 Scouts 2nd Riani
11 Scouts 2nd Ali)]
In the dataframe “df”, group by “regiments, take the mean values of the other variables for those groups, then display them with the prefix_mean
df.groupby('regiment').mean().add_prefix('mean_')
mean_preTestScore | mean_postTestScore | |
---|---|---|
regiment | ||
Dragoons | 15.50 | 61.5 |
Nighthawks | 15.25 | 59.5 |
Scouts | 2.50 | 66.0 |
Create a function to get the stats of a group
def get_stats(group):
return {'min': group.min(), 'max': group.max(), 'count': group.count(), 'mean': group.mean()}
Create bins and bin up postTestScore by those pins
bins = [0, 25, 50, 75, 100]
group_names = ['Low', 'Okay', 'Good', 'Great']
df['categories'] = pd.cut(df['postTestScore'], bins, labels=group_names)
Apply the get_stats() function to each postTestScore bin
df['postTestScore'].groupby(df['categories']).apply(get_stats).unstack()
count | max | mean | min | |
---|---|---|---|---|
categories | ||||
Good | 8.0 | 70.0 | 63.75 | 57.0 |
Great | 2.0 | 94.0 | 94.00 | 94.0 |
Low | 2.0 | 25.0 | 25.00 | 25.0 |
Okay | 0.0 | NaN | NaN | NaN |
Python Example for Beginners
Two Machine Learning Fields
There are two sides to machine learning:
- Practical Machine Learning:This is about querying databases, cleaning data, writing scripts to transform data and gluing algorithm and libraries together and writing custom code to squeeze reliable answers from data to satisfy difficult and ill defined questions. It’s the mess of reality.
- Theoretical Machine Learning: This is about math and abstraction and idealized scenarios and limits and beauty and informing what is possible. It is a whole lot neater and cleaner and removed from the mess of reality.
Data Science Resources: Data Science Recipes and Applied Machine Learning Recipes
Introduction to Applied Machine Learning & Data Science for Beginners, Business Analysts, Students, Researchers and Freelancers with Python & R Codes @ Western Australian Center for Applied Machine Learning & Data Science (WACAMLDS) !!!
Latest end-to-end Learn by Coding Recipes in Project-Based Learning:
Applied Statistics with R for Beginners and Business Professionals
Data Science and Machine Learning Projects in Python: Tabular Data Analytics
Data Science and Machine Learning Projects in R: Tabular Data Analytics
Python Machine Learning & Data Science Recipes: Learn by Coding
R Machine Learning & Data Science Recipes: Learn by Coding
Comparing Different Machine Learning Algorithms in Python for Classification (FREE)
Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.