Data Science and Machine Learning for Beginners in R – Boosting Ensembles with Grid Search using Mushroom Dataset

Hits: 119

 

Boosting is another ensemble learning method that is used to improve the performance of machine learning models. Like bagging, boosting combines the predictions of multiple models, but it does so in a different way. Instead of generating multiple subsets of the data and training a model on each subset, boosting trains a model on the entire dataset and then focuses on the observations that the model is not correctly classifying.

In this article, we will be discussing how to use Boosting ensembles with Grid Search to classify mushrooms using a dataset from the UCI Machine Learning Repository. The dataset contains information about different types of mushrooms, including their physical characteristics and whether they are poisonous or edible.

To begin, we first need to load the mushroom dataset into R. The dataset can be found on the UCI Machine Learning Repository website, and can be loaded into R using the read.csv() function.

Once we have the dataset loaded, we can start preprocessing the data. This may include cleaning the data, handling missing values, and transforming the data in a way that makes it easier to work with.

Once we have cleaned the data, we can start building our Boosting ensemble model. To do this, we will use the “xgboost” package in R. The xgboost package provides an easy way to build Boosting ensemble models in R.

However, building a Boosting ensemble model with the default parameters may not always be the best solution. It’s important to find the best parameters for our model. This is where grid search comes in. Grid search is a technique that allows us to specify a range of values for different parameters, and then train the model using all possible combinations of the parameters.

To perform grid search in R, we can use the caret package. The caret package provides an easy way to perform grid search with Boosting ensemble models. It will take care of generating all possible combinations of the parameters, training the model, and evaluating the performance of the model.

We can specify the range of values for different parameters, such as the number of trees in the ensemble, the learning rate, and the maximum depth of the trees. Once the grid search is finished, the caret package will return the combination of parameters that resulted in the best performance.

It’s important to keep in mind that the mushroom dataset is just an example of a dataset that can be used with Boosting ensembles and grid search. Boosting ensembles and grid search can be applied to any classification or regression problem, and can be used with any type of data.

In conclusion, Boosting ensembles are a powerful ensemble learning algorithm that can be used to improve the performance of machine learning models. By focusing on the observations that the model is not correctly classifying, boosting can help to reduce overfitting and improve the overall accuracy of a system. Grid search is a technique that can be used to find the best parameters for a Boosting ensemble model. In this article, we were able to demonstrate how to use Boosting ensembles with Grid Search to classify mushrooms using the mushroom dataset from UCI in R.

In this Applied Machine Learning & Data Science Coding Recipe, the reader will find the practical use of applied machine learning and data science in Python and R programming. Data Science and Machine Learning for Beginners in R – Boosting Ensembles with Grid Search using Mushroom Dataset.

What should I learn from this Applied Machine Learning & Data Science tutorials?

You will learn:

 

Personal Career & Learning Guide for Data Analyst, Data Engineer and Data Scientist

Applied Machine Learning & Data Science Projects and Coding Recipes for Beginners

A list of FREE programming examples together with eTutorials & eBooks @ SETScholars

95% Discount on “Projects & Recipes, tutorials, ebooks”

Projects and Coding Recipes, eTutorials and eBooks: The best All-in-One resources for Data Analyst, Data Scientist, Machine Learning Engineer and Software Developer

Topics included: Classification, Clustering, Regression, Forecasting, Algorithms, Data Structures, Data Analytics & Data Science, Deep Learning, Machine Learning, Programming Languages and Software Tools & Packages.
(Discount is valid for limited time only)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.

Learn by Coding: v-Tutorials on Applied Machine Learning and Data Science for Beginners

Please do not waste your valuable time by watching videos, rather use end-to-end (Python and R) recipes from Professional Data Scientists to practice coding, and land the most demandable jobs in the fields of Predictive analytics & AI (Machine Learning and Data Science).

The objective is to guide the developers & analysts to “Learn how to Code” for Applied AI using end-to-end coding solutions, and unlock the world of opportunities!