This article describes how to change ggplot axis labels (or axis title). This can be done easily using the R function labs() or the functions xlab() and ylab().

In this R graphics tutorial, you will learn how to:

  • Remove the x and y axis labels to create a graph with no axis labels. For example to hide x axis labels, use this R code: p + theme(axis.title.x = element_blank()).
  • Change the font style of axis labels (sizecolor and face).



  • Key ggplot2 R functions
  • Change axis labels
  • Change label size, color and face
  • Remove axis labels
  • Conclusion


Key ggplot2 R functions

  • Start by creating a box plot using the ToothGrowth data set:
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + 
  • Change x and y axis labels as follow:
  • p + xlab(“New X axis label”): Change the X axis label
  • p + ylab(“New Y axis label”): Change the Y axis label
  • p + labs(x = “New X axis label”, y = “New Y axis label”): Change both x and y axis labels
  • Key ggplot2 theme options to change the font style of axis titles:
  axis.title = element_text(),         # Change both x and y axis titles
  axis.title.x = element_text(),       # Change x axis title only = element_text(),   # For x axis label on top axis
  axis.title.y = element_text(),       # Change y axis title only
  axis.title.y.right = element_text(), # For y axis label on right axis

Arguments of the function element_text() includes:

  • color, size, face, family: to change the text font color, size, face (“plain”, “italic”, “bold”, “bold.italic”) and family.
  • lineheight: change space between two lines of text elements. Number between 0 and 1. Useful for multi-line axis titles.
  • hjust and vjust: number in [0, 1], for horizontal and vertical adjustment of axis titles, respectively.
    • hjust = 0.5: Center axis titles.
    • hjust = 1: Place axis titles on the right
    • hjust = 0: Place axis titles on the left
  • To remove a particular axis title, use element_blank() instead of element_text(), for the corresponding theme argument.


For example to remove all axis titles, use this: p + theme(axis.title = element_blank()).

Change axis labels

# Default plot

# Change axis labels
p <- p + labs(x = "Dose (mg)", y = "Teeth length")

Change label size, color and face

  • Key functions: theme() and element_text()
  • Allowed values for axis titles font face: “plain”, “italic”, “bold” and “bold.italic”
p + theme(
  axis.title.x = element_text(color = "blue", size = 14, face = "bold"),
  axis.title.y = element_text(color = "#993333", size = 14, face = "bold")

Remove axis labels

Key function: use element_blank() to suppress axis labels.

p + theme(axis.title.x = element_blank(),
          axis.title.y = element_blank())

Remove all axis titles at once:

p + theme(axis.title = element_blank())


Change a ggplot x and y axis titles as follow:

p + labs(x = " x labels", y = "y labels")+
    axis.title.x = element_text(size = 14, face = "bold"),
    axis.title.y = element_text(size = 14, face = "bold.italic")


Python Example for Beginners

Two Machine Learning Fields

There are two sides to machine learning:

  • Practical Machine Learning:This is about querying databases, cleaning data, writing scripts to transform data and gluing algorithm and libraries together and writing custom code to squeeze reliable answers from data to satisfy difficult and ill defined questions. It’s the mess of reality.
  • Theoretical Machine Learning: This is about math and abstraction and idealized scenarios and limits and beauty and informing what is possible. It is a whole lot neater and cleaner and removed from the mess of reality.


Data Science Resources: Data Science Recipes and Applied Machine Learning Recipes

Introduction to Applied Machine Learning & Data Science for Beginners, Business Analysts, Students, Researchers and Freelancers with Python & R Codes @ Western Australian Center for Applied Machine Learning & Data Science (WACAMLDS) !!!

Latest end-to-end Learn by Coding Recipes in Project-Based Learning:

Applied Statistics with R for Beginners and Business Professionals

Data Science and Machine Learning Projects in Python: Tabular Data Analytics

Data Science and Machine Learning Projects in R: Tabular Data Analytics

Python Machine Learning & Data Science Recipes: Learn by Coding

R Machine Learning & Data Science Recipes: Learn by Coding

Comparing Different Machine Learning Algorithms in Python for Classification (FREE)

Disclaimer: The information and code presented within this recipe/tutorial is only for educational and coaching purposes for beginners and developers. Anyone can practice and apply the recipe/tutorial presented here, but the reader is taking full responsibility for his/her actions. The author (content curator) of this recipe (code / program) has made every effort to ensure the accuracy of the information was correct at time of publication. The author (content curator) does not assume and hereby disclaims any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from accident, negligence, or any other cause. The information presented here could also be found in public knowledge domains.  

Google –> SETScholars